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Monte Carlo Simulations of Proton Acceleration

   Theoretical models predict detectable gamma-ray emission from 
   Colliding Wind Binaries (injection efficiency not considered)

   Only detection of gamma-rays from CWBs associated with 
   Eta Carinae

   No detection of gamma-rays from WR140, nor WR147

   Simulations of particle acceleration can treat injection efficiency

Motivations
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Monte Carlo Simulations of Proton Acceleration

   Why Colliding Wind Binaries?

→ Strong stellar winds collide and form shock fronts

Introduction: Colliding Wind Binaries
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Monte Carlo Simulations of Proton Acceleration

   First order Fermi process

   Magnetic turbulences responsible for scattering (scattering centers)

   In the frame of the scattering centers:
   → elastic scattering
   → pitch angle isotropization

Introduction: Diffusive Shock Acceleration (DSA)

Lecture slides Astroparticle physics

Obertrubach-Bärnfels, 9th October 2015Astroparticle School



of6 21

Monte Carlo Simulations of Proton Acceleration

   Particle in cell (PIC)

   Hybrid simulations

   Monte Carlo simulations

Simulations - Different types
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Monte Carlo Simulations of Proton Acceleration

   Particle in cell (PIC): → particles followed in the simulation box

→ electromagnetic fields determined by 
     particle distribution and Maxwell equations

→ computationally demanding 

   Hybrid simulations

   Monte Carlo simulations

Simulations - Different types
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Monte Carlo Simulations of Proton Acceleration

Obertrubach-Bärnfels, 9th October 2015

   Particle in cell (PIC)

   Hybrid simulations: → electrons treated as fluid

→ protons followed in the simulation box

→ electromagnetic fields determined by 
     particle distribution and Maxwell equations

→ computationally demanding 
     (but less than PIC)

   Monte Carlo simulations

Simulations - Different types
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Monte Carlo Simulations of Proton Acceleration

   Particle in cell (PIC)

   Hybrid simulations

   Monte Carlo simulations (test particle):

→ particles followed in simulation region

→ background of plasma and electromagnetic field (jump conditions)

→ spectrum over large energy range

→ scattering process modelled

Simulations - Different types
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Monte Carlo Simulations of Proton Acceleration

   Extremely large simulation region

   Hydrodynamic simulations can       
   be used as background

   the particular geometry of the system  
   can be taken into account

   Injection efficiency can be considered  
   (under certain assumptions on the       
   scattering process)

Simulations – The chosen one: Monte Carlo
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Monte Carlo Simulations of Proton Acceleration

Simulations – Basic setup

   2 Cells (upstream, downstream) 

   Guiding center approximation

   Particles move in the cells until:

(a)   A scattering occurs after a mean free path (in the flow frame):

(b)   The cell boundary is reached → the particle changes cell and 
 moves there until (a), (b) or (c) occurs 

(c)   The particle reaches the boundary of the simulation region 
→ particle removed from the system

   Particle splitting 

Obertrubach-Bärnfels, 9th October 2015Astroparticle School

λmfp=ηr g



of12 21

Monte Carlo Simulations of Proton Acceleration

Simulations – Basic setup

   Scattering:
 
   → transformation of momentum from shock frame to plasma flow frame

   → new μ = cos(θ
pitch

) assigned with uniform distribution in [-1,1] (flow frame)

   → energy conserved (flow frame)

   → transformation from plasma flow frame to shock frame
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Monte Carlo Simulations of Proton Acceleration

Simulations – Basic setup

   Cross-field diffusion: guiding center moved in random direction by

with    and

   Record of spectrum: → when a particle crosses a certain surface, its statistical 
  weight is added to the appropriate energy bin

d=2⋅ε⋅rg ε∈[0,1]r g=
p sin (θ)

qB
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Monte Carlo Simulations of Proton Acceleration

   Idea: use results of HD simulations of colliding wind binaries as         
   background for Monte Carlo simulations (test particle approach)

  Considered binary system: Wolf-Rayet and B stars

Simulations with HD background
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Monte Carlo Simulations of Proton Acceleration

   Idea: use results of HD simulations of colliding wind binaries as         
   background for Monte Carlo simulations (test particle approach)

  Considered binary system: Wolf-Rayet and B stars

Simulations with HD background
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Monte Carlo Simulations of Proton Acceleration

   Compression ratio r >≈ 4 along shocks

Simulations with HD background
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs

HD simulation region Selection:
60x60x60 cells
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs
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Injection positions

Measurement surface WR

  Particles injected upstream of shock

  Maxwell-Boltzmann distribution, 

   T≈104 K

  Particles leave the system by crossing
   boundary of simulation region
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs

  Magnetic field and plasma flow aligned

              B
surface

= 100 G

  B≈10-4 T at injection position (B shock)
  B≈10-5 T at injection position (WR shock)

  B field directly downstream determined
  by shock-jump conditions

  B field inside collision region scales 
  with thermal pressure 
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs

First simulations with HD background

  Results:

  Slightly different spectral indices and
  injection efficiencies on the two sides
  of wind collision region
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Monte Carlo Simulations of Proton Acceleration

   Eta Carinae only CWB system with gamma-ray emission detected

   Simulations needed for considering injection efficiency

   Monte Carlo simulations: can extend over large energy range

   Test-particle approach with background determined by HD simulations

   Future: → background from MHD simulations
→ computation of gamma-ray fluxes

Summary
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Monte Carlo Simulations of Proton Acceleration
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