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. . . ®
Monte Carlo Simulations of Proton Acceleration

Motivations

® Theoretical models predict detectable gamma-ray emission from
Colliding Wind Binaries (injection efficiency not considered)

® Only detection of gamma-rays from CWBs associated with
Eta Carinae

® No detection of gamma-rays from WR140, nor WR147

® Simulations of particle acceleration can treat injection efficiency
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Monte Carlo Simulations of Proton Acceleration

® Why Colliding Wind Binaries?

— Strong stellar winds collide and form shock fronts
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Monte Carlo Simulations of Proton Acceleration

Introduction: Diffusive Shock Acceleration (DSA)

downstream upstream

E 1 ( \

Lecture slides Astroparticle physics

® First order Fermi process

® Magnetic turbulences responsible for scattering (scattering centers)

® In the frame of the scattering centers:
— elastic scattering
— pitch angle isotropization
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Monte Carlo Simulations of Proton Acceleration

® Particle in cell (PIC)

® Hybrid simulations

® Monte Carlo simulations
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Monte Carlo Simulations of Proton Acceleration

Simulations - Different types

® Particle in cell (PIC): - particles followed in the simulation box

- electromagnetic fields determined by
particle distribution and Maxwell equations

— computationally demanding
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Monte Carlo Simulations of Proton Acceleration

Simulations - Different types

® Hybrid simulations: - electrons treated as fluid
— protons followed in the simulation box

- electromagnetic fields determined by
particle distribution and Maxwell equations

— computationally demanding
(but less than PIC)
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Monte Carlo Simulations of Proton Acceleration

Simulations - Different types

® Monte Carlo simulations (test particle):
— particles followed in simulation region
— background of plasma and electromagnetic field (jJump conditions)
— spectrum over large energy range

— scattering process modelled
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Monte Carlo Simulations of Proton Acceleration
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Extremely large simulation region

Hydrodynamic simulations can
be used as background

1

the particular geometry of the system
can be taken into account

Injection efficiency can be considered
(under certain assumptions on the
scattering process)
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. . . ®
Monte Carlo Simulations of Proton Acceleration

Simulations — Basic setup
® 2 Cells (upstream, downstream)
® Guiding center approximation

® Particles move in the cells until:

(a) A scattering occurs after a mean free path (in the flow frame):
Appy=MT

(b) The cell boundary is reached — the particle changes cell and
moves there until (a), (b) or (c) occurs

(c) The particle reaches the boundary of the simulation region
— particle removed from the system

@ Particle splitting
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Monte Carlo Simulations of Proton Acceleration E

Simulations — Basic setup

® Scattering:
— transformation of momentum from shock frame to plasma flow frame

- New u = cos(@pitch) assigned with uniform distribution in [-1,1] (flow frame)

— energy conserved (flow frame)

— transformation from plasma flow frame to shock frame
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Monte Carlo Simulations of Proton Acceleration

Simulations — Basic setup

® Cross-field diffusion: guiding center moved in random direction by

psin(0)

and ¢€[0,1]
gB

d=2-er, with ry=

® Record of spectrum: — when a particle crosses a certain surface, its statistical
weight is added to the appropriate energy bin
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background

® |dea: use results of HD simulations of colliding wind binaries as
background for Monte Carlo simulations (test particle approach)

® Considered binary system: Wolf-Rayet and B stars

Star M. R, T. L, M v.. B,

Mol [Re]l Kl [Lel Meyr'l[kms'] [G
B 30 20 23000 10° 106 4000 100
WR 30 10 4000023 x10° 105 4000 100

» M. stellar mass » M mass loss rate
» R, stellar radius » V., terminal velocity of wind
» T, effective temperature

» L, luminosity

» B, surface magnetic field
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background

® |dea: use results of HD simulations of colliding wind binaries as
background for Monte Carlo simulations (test particle approach)

® Considered binary system: Wolf-Rayet and B stars
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Monte Carlo Simulations of Proton Acceleration

® Compression ratio r >= 4 along shocks
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Monte Carlo Simulations of Proton Acceleration
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs
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. . . @
Monte Carlo Simulations of Proton Acceleration E

Simulations with HD background - First runs

Measurement surface B
Measurement surface WR

Vabs ® Magnetic field and plasma flow aligned
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Monte Carlo Simulations of Proton Acceleration

Simulations with HD background - First runs

B shock

Wi oo ® Results:
Joc (E(E42mp)) 0% oo

Star Spectral index Injection efficiency

o €
B 1.90 £0.02 ~ 11%
WR 176 +£0.02 ~ 14%

@ Slightly different spectral indices and
injection efficiencies on the two sides
of wind collision region

First simulations with HD background
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Monte Carlo Simulations of Proton Acceleration

Summary

® FEta Carinae only CWB system with gamma-ray emission detected

® Simulations needed for considering injection efficiency

® Monte Carlo simulations: can extend over large energy range

@® Test-particle approach with background determined by HD simulations

® Future: - background from MHD simulations
— computation of gamma-ray fluxes
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Monte Carlo Simulations of Proton Acceleration
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