

Monte Carlo Simulations of Proton Acceleration in Colliding Wind Binaries

Astroparticle School

Obertrubach-Bärnfels, 9th October 2015

Overview

- Motivations
- Introduction
- Simulations
- Summary

Motivations

- Theoretical models predict detectable gamma-ray emission from Colliding Wind Binaries (injection efficiency not considered)
- Only detection of gamma-rays from CWBs associated with Eta Carinae
- No detection of gamma-rays from WR140, nor WR147
- Simulations of particle acceleration can treat injection efficiency

Introduction: Colliding Wind Binaries

- Why Colliding Wind Binaries?
 - \rightarrow Strong stellar winds collide and form shock fronts

Introduction: Diffusive Shock Acceleration (DSA)

- First order Fermi process
- Magnetic turbulences responsible for scattering (scattering centers)
- In the frame of the scattering centers:
 - → elastic scattering
 - \rightarrow pitch angle isotropization

- Particle in cell (PIC)
- Hybrid simulations
- Monte Carlo simulations

- Particle in cell (PIC): \rightarrow particles followed in the simulation box
 - → electromagnetic fields determined by particle distribution and Maxwell equations
 - \rightarrow computationally demanding
- Hybrid simulations
- Monte Carlo simulations

- Particle in cell (PIC)
- Hybrid simulations: \rightarrow electrons treated as fluid
 - \rightarrow protons followed in the simulation box
 - → electromagnetic fields determined by particle distribution and Maxwell equations
 - → computationally demanding (but less than PIC)

Monte Carlo simulations

- Particle in cell (PIC)
- Hybrid simulations
- Monte Carlo simulations (test particle):
 - \rightarrow particles followed in simulation region
 - \rightarrow background of plasma and electromagnetic field (jump conditions)
 - \rightarrow spectrum over large energy range
 - \rightarrow scattering process modelled

Simulations – The chosen one: Monte Carlo

Simulations – Basic setup

- 2 Cells (upstream, downstream)
- Guiding center approximation
- Particles move in the cells until:
 - (a) A scattering occurs after a mean free path (in the flow frame):

 $\lambda_{mfp} = \eta r_g$

- (b) The cell boundary is reached \rightarrow the particle changes cell and moves there until (a), (b) or (c) occurs
- (c) The particle reaches the boundary of the simulation region \rightarrow particle removed from the system
- Particle splitting

Simulations – Basic setup

- Scattering:
 - \rightarrow transformation of momentum from shock frame to plasma flow frame
 - → new $\mu = \cos(\theta_{pitch})$ assigned with uniform distribution in [-1,1] (flow frame)
 - → energy conserved (flow frame)
 - \rightarrow transformation from plasma flow frame to shock frame

Simulations – Basic setup

Cross-field diffusion: guiding center moved in random direction by

$$d = 2 \cdot \varepsilon \cdot r_g$$
 with $r_g = \frac{p \sin(\theta)}{qB}$ and $\varepsilon \in [0,1]$

 Record of spectrum: → when a particle crosses a certain surface, its statistical weight is added to the appropriate energy bin

Astroparticle School

Obertrubach-Bärnfels, 9th October 2015

13 of 21

Simulations with HD background

- Idea: use results of HD simulations of colliding wind binaries as background for Monte Carlo simulations (test particle approach)
- Considered binary system: Wolf-Rayet and B stars

			• *	L_*	IVI	$oldsymbol{v}_\infty$	$oldsymbol{B}_{*}$
[N	ا ⊙ا	[R _☉]	[K]	[L _☉]	$[M_{\odot} yr^{-1}]$	[km s ⁻¹]	[G]
B :	30	20	23000	10 ⁵	10 ⁻⁶	4000	100
WR 3	30	10	40000	$2.3 imes10^5$	10 ⁻⁵	4000	100

- ► *M*_{*} stellar mass
- R_{*} stellar radius
- *T*_{*} effective temperature
- ► *L*_{*} luminosity

- ► M mass loss rate
- $ightarrow v_\infty$ terminal velocity of wind
- ► B_{*} surface magnetic field

Simulations with HD background

- Idea: use results of HD simulations of colliding wind binaries as background for Monte Carlo simulations (test particle approach)
- Considered binary system: Wolf-Rayet and B stars

Simulations with HD background

Obertrubach-Bärnfels, 9th October 2015

First simulations with HD background

Results:

Star	Spectral index	Injection efficiency		
	σ	arepsilon		
В	$\textbf{1.90} \pm \textbf{0.02}$	pprox 11%		
WR	1.76 ± 0.02	pprox 14%		

 Slightly different spectral indices and injection efficiencies on the two sides of wind collision region

Summary

- Eta Carinae only CWB system with gamma-ray emission detected
- Simulations needed for considering injection efficiency
- Monte Carlo simulations: can extend over large energy range
- Test-particle approach with background determined by HD simulations
- Future: \rightarrow background from MHD simulations
 - \rightarrow computation of gamma-ray fluxes

References

- M. G. Baring, D. C. Ellison and F. C. Jones, Monte Carlo simulations of particle acceleration at oblique shocks, Astrophysical Journal Supplement Series 90 (1994) 547-552
- M. G. Baring, D. C. Ellison and F. C. Jones, Monte Carlo simulations of particle acceleration at oblique shocks: Including cross-field diffusion, Advances in Space Research 15 (1995) 397-400
- A. Reimer, M. Pohl and O. Reimer, *Nonthermal high-energy emission from colliding winds of massive stars*, The Astrophysical Journal **644** (2006) 1118
- K. Reitberger et al., High-energy Particle Transport in Three-dimensional Hydrodynamic Models of Colliding-wind Binaries, The Astrophysical Journal 782 (2014) 96
- M. Werner, O. Reimer, A. Reimer and K. Egberts, *Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries*, Astronomy & Astrophysics 555 (2013) A102