

Schwarze Löcher

und ihre kosmologische Bedeutung

Peter Predehl, Max-Planck-Institut für extraterrestrische Physik, Garching

Die kosmische Zeitskala

Bildung der großräumigen Strukturen

Simulation der Dunklen Materie

Klypin, Kravtsov, Gottlöber

Bildung und Evolution der Galaxienhaufen

Dark Universe Observatory

Into the darkness peering...

PI: R. Griffiths (CMU) currently competitive NASA Phase-A study 0.1-10 keV sky survey for clusters Study of Dark Energy

Dunkle Materie und Dunkler Energie

Galaxienhaufen

Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI, ST-ECF) • STScI-PRC00-08

HST • WFPC2

⇒ Galaxien bilden nur einen kleinen (0.5%) Anteil, der Rest ist heißen Gas und Dunkler Materie

Einfluß eines energetischen AGN

(z.B.) auf den Virgo-Haufen

... oder auf den Perseus Haufen

Perseus Haufen "Schallwellen"

Energetsche zentrale Scharze Löcher beeinflussen die Struktur des Haufens!

Vereinheitlichtes Bild der AGN

Frühere AGN-Tätigkeit?

ASCA: Fe $K\alpha$ Fluoreszenz Röntgenquelle?

> 10³⁹ erg s⁻¹ benötigt

Sunyaev 1993, Koyama 1996, Murakami 2000

6.4 keV Fe Ka

Sgr B2

Keine Fe-absorption Kante!

Elektronen – Anregung

Predehl, Tanaka, 2002

+ Bremsstrahlung: kT = 8.6 \pm 1.2 keV + Linien 6.4 keV, 7.05 keV, 8.04 keV N_H ~ 4.7 \pm 0.3 \times 10²² cm-2 EQW_{K\alpha} = 1.05 keV EQW_{K\alpha} ~ 150 eV

Sgr A*

Flares im X-ray und IR- Bereich, quasiperiodische Substrukturen
→ schnell rotierendes BH

"Demoskopie" Scharzer Löcher

Supermassive Schwarze Löcher in jeder Galaxie mit einem zentralen "Bulge".

→ Wechselwirkung zwischen Schwarzem Loch und Galaxie!

Entstehung supermassiver Schwarzer Löcher

Geburt, Leben und Tod der Sterne

0,05 M_☉

30 Mo

Roter Riese

planetarischer Nebel

Weißer Zwerg

Überriese

Überriese

Schwarzect

Stellare Überreste

Anfängliche Sternmasse

Gamma-ray Bursts Geburt stellarer Schwarzer Löcher in

Polarization des Afterglows

Swift
NASA/UK/I/D
Launch Oct 28th, 2004
Chase high-redshift
Gamma Ray Bursts

Entstehung der ersten Sterne und Schwarzen Löcher

Bevor der erste Stern überhaupt entstehen kann, muss sich das Universum genügen (~100K) abgekühlt haben!

Der erste Stern war wahrscheinlich sehr massiv (300-1000 M), strahlte während etwa ~1 Mio Jahre, "sterilisierte" seine Umgebung, explodierte in einer Hypernova, reicherte seine Umgebung mit schweren Elementen an und hinterließ ein Schwarzes Loch als Keimzelle für späteren AGN.

Entstehung der Quasare?

Archibald et al., 2001

Wie werden Schwarze Löcher gefüttert?

1. Aktive Schwarze Löcher

Animation: W. Steffen, Guadalajara

Problem: Materie muss Drehmoment verlieren, bevor sie auf das Schwarze Loch fallen kann.

2. "Merger": Kollision von zwei Galaxien mit Schwarzen Löchern

3. "Tidal Capture"

Ein ganzer Stern wir eingefangen und durch Gezeitenreibung zerrissen.

Nach einem hellen Aufleuchten im Röntgenlicht nimmt die Helligkeit kontinuierlich über etwa 10 Jahre ab.

Etwa 5 solcher Ereignisse wurden während der ROSAT Mission beobachtet.

Kosmologische Entwicklung supermassiver Scharzer Löcher

Kalt und heiß

Das 6,000 K Universum: Sterne

Das 1,000,000 K Universum: Schwarze Löcher & heißes Gas

Hubble ACS Ultradeep Field

XMM-Newton 1 Msec Field

Der Röntgenhintergrund

=> E<2keV XRB aufgelöst, oberhalb von E>5keV noch nicht!

Local BH mass vs. accreted BH mass function

- •Accreted Black Hole mass function derived from X-ray background can be compared with the mass function of dormant relic black holes in local galaxies.
- •These two estimates can be reconciled, if an energy conversion efficiency of ϵ =0.1 is assumed.
- Such high efficiency requires a spinning Kerr-BH!

Marconi et al., 2004, MNRAS

Röntgenbeobachtung Schwarzer Löcher Simulation courtesy Chris Reynolds ASCA: Relativistische Eisenlinie Tanaka et al. 1995 Energy (keV)

Lockman Hole

800 ks XMM-Newton Beobachtung

Summierte Spektren zeigen Eisenlinie

Streblyanskaya et al., 2004

Wenn die Dunkle Energie das Universum dominiert, geschieht der Urknall noch immer! Black Holes terminate by Hawking Radiation Stellar blackou