

Schwarze Löcher und ihre kosmologische Bedeutung

Peter Predehl, Max-Planck-Institut für extraterrestrische Physik, Garching

Astroteilchenschule, Obertrubach, 11.Oktober 2004

Die kosmische Zeitskala

Rotverschiebung z

Bildung der großräumigen Strukturen

Simulation der Dunklen Materie Klypin, Kravtsov, Gottlöber

Bildung und Evolution der Galaxienhaufen

Dunkle Materie

z = 20.0

dark matter density

Baryonisches Gas

gas density

Springel et al., 2003

gas temperature

Dark Universe Observatory

Into the darkness peering...

PI: R. Griffiths (CMU) currently competitive NASA Phase-A study 0.1-10 keV sky survey for clusters Study of Dark Energy

Dunkle Materie und Dunkler Energie

Galaxienhaufen

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08 HST • WFPC2

⇒ Galaxien bilden nur einen kleinen (0.5%) Anteil, der Rest ist heißen Gas und Dunkler Materie

Die Welt der Galaxien

Einfluß eines energetischen AGN (z.B.) auf den Virgo-Haufen

... oder auf den Perseus Haufen

ROSAT HRI NGC 1275

Böhringer et al

1 arcmin

Energetsche zentrale Scharze Löcher beeinflussen die Struktur des Haufens!

Perseus Haufen "Schallwellen"

Vereinheitlichtes Bild der AGN

Unsere Milchstraße

Schwarzes Loch mit $3-4 \times 10^{6}$ M_o im Galaktischen Zentrum

nandra

Schwarze Löche

Stellare

Frühere AGN-Tätigkeit?

ASCA: Fe Kα Fluoreszenz Röntgenquelle? > 10³⁹ erg s⁻¹ benötigt

Sunyaev 1993, Koyama 1996, Murakami 2000

$6.4 \text{ keV} \text{Fe} \text{K}\alpha$

+ Bremsstrahlung: kT = 8.6 \pm 1.2 keV + Linien 6.4 keV, 7.05 keV, 8.04 keV N_H ~ 4.7 \pm 0.3 × 10²² cm-2 EQW_{Ka} = 1.05 keV EQW_{Ka} ~ 150 eV

Keine Fe-absorption Kante!

Elektronen – Anregung

Predehl, Tanaka, 2002

Sgr A*

 \rightarrow schnell rotierendes BH

"Demoskopie" Scharzer Löcher

Supermassive Schwarze Löcher in jeder Galaxie mit einem zentralen "Bulge". → Wechselwirkung zwischen Schwarzem Loch und Galaxie!

Entstehung supermassiver Schwarzer Löcher

Geburt, Leben und Tod der Sterne Brauner Zwerg

Schwarzes 1

 $0,05~{
m M}_{\odot}$

 $1 M_{\odot}$

Überniese

10 M.

30 M.

planetarischer Roter Riese Nebel

Weißer Zwerg

Überriese,

Neutronenstern

Stellare Überreste

Anfängliche Sternmasse

Geburt stellarer Schwarzer Löcher in Hypernova?!

Polarization des Afterglows

Swift NASA/UK/I/D Launch Oct 28th, 2004 Chase high-redshift Gamma Ray Bursts

XRT

BAT

Spacecraft

UVOT

Entstehung der ersten Sterne und Schwarzen Löcher

Bevor der erste Stern überhaupt entstehen kann, muss sich das Universum genügen (~100K) abgekühlt haben!

Der erste Stern war wahrscheinlich sehr massiv (300-1000 M), strahlte während etwa ~1 Mio Jahre, "sterilisierte" seine Umgebung, explodierte in einer Hypernova, reicherte seine Umgebung mit schweren Elementen an und hinterließ ein Schwarzes Loch als Keimzelle für späteren AGN.

Entstehung der Quasare?

Archibald et al., 2001

Wie werden Schwarze Löcher gefüttert?

1. Aktive Schwarze Löcher

Animation: W. Steffen, Guadalajara

Problem: Materie muss Drehmoment verlieren, bevor sie auf das Schwarze Loch fallen kann.

2. "Merger": Kollision von zwei Galaxien mit Schwarzen Löchern

Galaxies NGC 2207 and IC 2163

3. "Tidal Capture"

Ein ganzer Stern wir eingefangen und durch Gezeitenreibung zerrissen.

Nach einem hellen Aufleuchten im Röntgenlicht nimmt die Helligkeit kontinuierlich über etwa 10 Jahre ab.

Etwa 5 solcher Ereignisse wurden während der ROSAT Mission beobachtet.

ROSAT, Chandra, XMM: Komossa et al., 2004

Kosmologische Entwicklung supermassiver Scharzer Löcher

Kalt und heißDas 6,000 K Universum:
SterneDas 1,000,000 K Universum:
Schwarze Löcher & heißes Gas

Hubble ACS Ultradeep Field

XMM-Newton 1 Msec Field

Der Röntgenhintergrund

XMM-Newton

ROSAT

Chandra

Der Hintergrund ist das Echo der Entstehung supermassiver Schwarzer Löcher während der ganzen Geschichte des Universums!

ROSAT

ROSAT

Der Röntgenhintergrund

Local BH mass vs. accreted BH mass function

•Accreted Black Hole mass function derived from X-ray background can be compared with the mass function of dormant relic black holes in local galaxies.

•These two estimates can be reconciled, if an energy conversion efficiency of ε =0.1 is assumed.

 Such high efficiency requires a spinning Kerr-BH!

Marconi et al., 2004, MNRAS

Röntgenbeobachtung Schwarzer Löcher

ASCA: Relativistische Eisenlinie Tanaka et al. 1995

Simulation courtesy Chris Reynolds

Streblyanskaya et al., 2004

