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1 Preface

This is a copy of Simon White’s Lecture held during the Astroteilchenschule 2004 in
Obertrubach Bärnfels. The script has been generated by lecture notes of Svenja Klages
(MPIK Heidelberg) and Thomas Mädler (Landessternwarte Königstuhl-Heidelberg). Any
errors are most probably originated by incorrect lecture notes.

2 Cosmological principle

“Not only the laws of nature but also the events occurring in nature must appear the
same in all directions to all observer” Milne 1935

• generalised Copernican principle

• universe is isotropic for all fundamental observers (FO)

• obviously false!
relevant assumption δΦGrav.

c2
<< 1 for all structures

• the only possible motion of FOs are uniform expansions or extractions, Hubble
(1926) showed that our universe is expanding

• there exist maximally symmetric 3–surfaces on which ρ, p, T are constant

• Robertson Walker metric

dτ 2 = dt2 − a(t)2

[

dr2

1 − k r2
+ r2 (dθ2 + sin2 θ dφ2)

]

,

where r, θ, φ are comoving coordinates and a(t) is called cosmic expansion factor;
they can be determined from General Relativity (GR) and Equation of State (EoS);
k is a curvature parameter and can satisfy

k =











+1 pos. curved 3–system V = 2πa3

0 Euclidian space with spatially infinite volume
–1 neg.curved space with spatially infinite volume

• the distances are known to be time–like if dτ > 0, null– or light–like if dτ = 0 or
space–like in case of dτ < 0

3 Free particle motion and thermodynamics

3.1 Massive nonrelativistic particles

Particles are accelerated w.r.t. their local FO. Hence their peculiar velocities satisfies

δvp + (vpδt)
ȧ

a
= 0 ⇒ vp ∝

1

a
.
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this for a non–rel. gas ρ ∝ a−3, T ∝ a−2

p ∝ ρT ∝ ρ5/3 p << ρc2

More generally dU = −pdV U = ρV ∝ a3

ρ

da
+ 3

p + ρ

a
= 0

3.2 Relativistic particles

Consider light signal from a FO at re propagating to the origin

∫ t0

te

dt

a(t)
=
∫ r0

0

dr√
1 − kr2

−
∫ t0+δt0

te+δte

dt

a(t)
,

where δte and δt0 are emitted and observed spacing of successive wave crests.

→ δt0
a(t0)

=
δte

a(te)
⇒ period ∝ λ ∝ a

wavelength of all photons are redshifted by a(t0)
a(te)

, take t0 to be the present time this gives
standard redshift

1 + z =
a(t0)

a(te)

For a photon gas

λ ∝ a for each photon

nγ ∝ a−3

For a black body

nγ ∝ T 3 λPeak ∝ 1

T
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Blackbody radiation remains blackbody radiation as the universe expands.

3.3 False vacuum and cosmological constant

dρ

da
+ 3

p + ρ

a
= 0

If we have p = const (e.g. false vacuum) → p = −ρ. The Equation of State gives

non-rel. rel. for Cosmological Constant
p = 0 p = 1

3
ρ p = −ρ

More generally people write p = wρ where w = −1 in case of a Cosm. Constant.
quintessence models have w > −1 and are time variable.
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4 Angles and luminosities

Consider a source of proper size is D
and intrinsic luminosity is L

D = a(t) r∆Θ =
a(t0) r

1 + z
∆Θ

Similarly an area A at the origin
subtends at source a solid angle
A = (a(t0)r)

2 Ω

Received flux/unit are

f =
1

A
L

Ω

4π

(

a(t)

a(t0)

)2

=
L

4πd2
=

L

4π [a(t) re (1 + z)]2

One power of a(t)
a(t0)

from photons arrival rate and second from photons energy redshift

a(t0) r (1 + z) angular size
are known as distance

a(t) r (1 + z) luminosity

Observed surface brightness is

f

π(∆Θ)2
=

L

4π2D2
(1 + z)−4

This dimming is independent of the relation between a(t0) r and z

5 Relativistic cosmologies

Einstein Equation

Rµν = −8πG
(

Tµν −
1

2
gµν T λ

λ

)

Rµν is Ricci curvature tensor, gµν is the metric tensor and Tµν is Energy momentum
tensor of matter/isolation. Assume

• RW metric
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• isotropic perfect fluids

→
(

ȧ

a

)2

=
8πG

3
ρ − k

a2
FRIEDMANN

With an Equation of State and initial conditions this specifies the solution of a(t).
Differentiation w.r.t. tie and using 1st law of thermodynamics gives

ä = −4π

3
G (ρ + 3p) a

Newtonian equation of motion for a uniform, uniformly expanding pressure free sphere
of active mass density ρ + 3p

accelerates < 0
Equation for ρ + 3p

decelerates > 0
(

ȧ

a

)2

=
8πG

3
(ρvac + ρmatter + ρrad) −

k

a2

Define

• H = ȧ
a

the Hubble parameter H0 = 72 ± 8kms−1

Mpc

• 1
ρcrit

= 8πG
3H2 critical density ρcrit ∼ 10−29 gcm−3

• Ω = ρ
ρcrit

density parameter for matter, radiation and vacuum which is time de-
pendent

H2 = H2Ωvac + H2Ωmatter + H2Ωrad −
k

a2

= H2
0Ωvac(0) + H2

0Ωmatter(0) (1 + z)3 + H2
0Ωrad(0) (1 + z)4 − k

a0

(1 + z)2

where 0 denotes the present state and ȧ
a

has been written as a function of 1 + z ≡ ȧ0

a
→

a(t)

6 Radiation– dominated universe

At high z

ȧ

a
=

8πG

3
ργ(0)

(

a0

a

)4

a

a0

=
1

1 + z
=

T0

T (z)
=

(

8πGργ(0)

3

)1/2 √
zt

Today ργ(0) is dominated by CMB ργ = 4.7 × 10−34 gcm−3 (BB at T=2.71 K
At early times (z > 104)

T

1010 K
∼ kT

1 MeV
∼ Hz

1010
∼
[

ρtot

107 gcm−3

]1/4

∼
[

ρBaryon

1 gcm−3

]1/3

∼
[

t

1 s

]−1/2

That is what is called HOT BIG BANG.
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7 Matter dominated universe

Measurements of distance–redshift relation

→ H0 = 72 ± 8 kms−1/Mpc

H−1
0 = 14 Gyr age of the universe

→ ρcrit =
3H2

0

8πG
= 1.0 × 10−29 gcm−3

→ Ωγ(0) = 5 × 10−5

CMB suggest Ω ≈ 1, Ωm(0) = 0.3, Ωγ(0) = 0.7 and implies therefore a present mat-
ter density of ρm(0) = 3 × 10−30 gcm−3. The universe switched from from radiation
dominated to matter dominated at

1 + z ≈ Ωm(0)

Ωγ(0)
≈ 6000

and from matter dominated to vacuum dominated

1 + z ≈ Ωvac(0)

Ωm(0)
≈ 1

• in matter dominated era

(

ȧ

a

)2

=
8πGρm(0)

3

(

a0

a

)

= Ωm(0) H2
0

(

a0

a

)3

a

a0

=
1

1 + z
=

T0

T (z)
=
(

2

3
Ω1/2

m (0) H0 t
)2/3

≈
(

t

17 Gyr

)2/3

This is called Einstein–de Sitter model.

• in vacuum dominated universe

(

ȧ

a

)2

=
8πGρvac(0)

3
= Ωvac(0) H2

0 = const.

a

a0
=

1

1 + z
= exp

[

Ω1/2
vac H0 (t − t0)

]

≈ exp

[

t − t0
25 Gyr

]

which is called de Sitter model.
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Current value of
ρvac ≈ 7 × 10−30 gcm−3

→ Tequiv ∼ 30 K → kTvac(0) ∼ 0.002 eV

The ’natural’ value for Λ would have

kT ∼ kTPlanck ≈ 1019 GeV

so the natural value is greater then the observed value by
(

kTPlanck

kTvac(0)

)4

≈ 10122
WHY ?

8 Horizon

A light ray emitted by an event at (r, t1) reaches (us) the origin at t2 where
∫ r

0

dr√
1 − kr2

=
∫ t2

t1

dt

a(t)
=
∫ a2

a1

da

a
√

8πGρa2

3
− k

If the t (or a) integral converges as t1 → 0 (a → 0) there exists FO who cannot yet

have communicated with us. Such observers are beyond our particle horizon. Particle
horizons expand with t2.Convergence requires ρa2 → ∞ as a → 0

• not true for a vacuum dom. universe

• true for rad.dom./ matter dom. universe
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9 Inflation

At some early time (kT ∼ kTGUT, t ∼ 10−30 s) the universe passed through a stage
when ä > 0 (↔ ρa2 increases with a) during which a increases by a large factor e.g.
passed through a GUT phase transition and get tuck in a phase with ρvac > 0 (and
dominant) for a time δt such that

Hδt >> 1 H2 +
8πGρvac

3

Inflation ends when transition to new phase is made and vacuum energy is clumped as
heat.

⇒ ’Graceful exit problem’

Transition must be completed without building strong inhomogeneities.

9.1 Flatness problem

Universe is already flat Ω(0) = Ωvac(0) + Ωm(0) + Ωγ(0) ≈ 1.02 ± 2% WMAP

H2 = H2Ωtot −
k

a2

1 − Ωtot = − k

H2a2

H ∝ a−2 rad. dom
a−3/2 matt. dom

→ 1 − Ω ∝











a2 rad. dom.
a matter dom.
a−2 vac. dom.

At tPlanck kTP ∼ 1019 GeV

1 − Ωtot(Pl) ≈ 10−58

• Why is 1 − Ωtot(Pl) at tPl so close to zero?

• Why is the universe so big? (c.f. to lp ∼ 10−33 cm)

• Why is the universe so old? (c.f. to tp ∼ 10−43 s)

During inflation however 1 − Ωtot ∝ a−2. So if Hδt > 67 then the expansion is > e67 ∼
1029. If 1 − Ω is O(1) at the beginning it is < 10−58 at the end. If Hδt exceeds 67 then
1 − Ω ≈ 0 today.
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9.2 Horizon problem

T1 and T2 are without causal connection, inflation solves this problem

9.3 Monopole problem

Most GUT allow magnetic monopoles with mc2 ∼ kTGUT.
Inflation dilutes their densities by > 1067.

9.4 Structure cluster

For a galaxy cluster: mass 1015 M� ∼ 1072 mp

Quantum fluctuations in a non inflating
universe cannot give this amplitude

a ∼ eHt ρ = ρvac =
3 H2

8πG
= const

δΦ

c2
∼ 10−5

1√
N

∼ 10−36

During inflation universe is approximately time invariant

• quantum fluctuation amplitude is time invariant

• fluctuations which “exit” the horizon at different times will have (statistically) the
same amplitude (but scales are different)
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• scales differ by
λ1

λ2
= exp[H (t1 − t2)]

t ∼ 1
H

, λhorizon ∼ c
H

At much later time λa(t)
a0

= ct the inflation re–enter the horizon
with the same amplitude. If fluctuations originated as zero point fluctuations of inflation
field → δΦ

c2
= const on all scales as fluctuations cross horizon.

HARRISON/ZEL’DOVICH FLUCTUATIONS

10 Thermal history of the universe

T t Process

1015 GeV 10−36 s possible epoch of inflation (?); Generation of structure
> 100 MeV < 10−4 s “quark soup”; no bound hadrons; baryogenesis
∼ 100 MeV 10−4 s quark hadron phase transition γ, ν, e−, e+, µ, p, n
∼ 3 MeV 0.1 s ν ′s “decouple” e.g. rate for e− + e+ ↔ ν + ν̄

becomes long compared to t ∼ 1/H;
universe becomes transparent to ν’s.

∼ 1 MeV 1 s rate for p + e− ↔ n + νe and n + e+ ↔ p + ν̄e

drops below H, final n
p

= exp
(

−∆m
kT

)

∼ 20%

0.3 MeV 10 s e+e− annihilation heats photon gas;
establishes final nγ

nν
∼ 11

3
nγ

nbaryon
∼ 109

0.1 MeV 100 s p + n → d becomes possible, almost all
n are bound to 4He

0.05 Mev 400 s nucleosynthesis complete 76 % H, 24% He
+ small amounts of 2H, 3He, 7Li;
exact amounts depend strongly on

nbaryon

nγ

3 × 106 K 1 yr inelastic scattering of γ becomes inefficient
Blackbody Spectrum cannot be created after this time
(gives limit on photon input); observed CMB →
no sign. input of γ after this time

1000 K 8000 yr universe switches from radiation to matter dom.
3000 K 3 × 105 yr Rec. rate p + e− → H dominates re-ionisation

by Wien tail of CMB photons: Recombination

3 K 13.2 Gyr (today) transparent to photons
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11 Structure formation

ρ(~r, t) = ρ̄(r)(1 − δ(~r, t)) δ << 1

linearise the evolution equation to get a linear equation for δ(~r, t).

∂2δ

∂t2
− c2

S∇2δ = 0

d2δk

dt2
+ c2

Sk2δk = 0

F.T. the spacial dependence δk ∼
∫

d3x δ(~r, t) ei~k·~x to get O.D.E in time for δ~k(t). At
late times an on long scales

δ~k = b(t)δ~k(t0) b independent of ~k; b ∝ t2/3 ∝ a

Characterise linear fluctuations by their power spectrum

→ P (k) ∝ kn with n ≈ 1

Waves with different k have uncorrelated phases therefore δ is a Gaussian random field.
Shape of P (k) at recombination depends on

• structure generator

• nature of dark matter
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