KM3NeT simulation: First steps in Erlangen

Sebastian Kuch University Erlangen-Nürnberg ANTARES collaboration meeting Erlangen, october 2004

What ,Why , How ?

Full Simulation of different KM3 detector layouts and models.

Goal:

get a feeling for the influence of the detector parameters on the peformance of the detector.

Starting point:

Standard ANTARES Software tools (similar to D.Zaborov, ANTARES-Soft-2002/008, 2004/004)

Simulation chain

Production \rightarrow **gentra**

Simple production of muon tracks: Energy $10 - 10^6$ GeV, spectral index (-)1, whole solid angle, Surface drawing, can z = 1600m, r = 950m. \rightarrow **No background!**

Detector simulation $\rightarrow \mbox{ km3}$

Including **hit** and **gen** to produce photon tables for different PM-types.

 \Rightarrow Some modifications of software were necessary!

Reconstruction \rightarrow **reco, Aartstartegy**

Unmodified (In contrast to D.Zaborov)!

Analysis

Calculation of effective area and angular resolution:

effective area:
$$A_{eff} = \frac{\sum_{n_{rec}} a_{eff}}{N_{sim}}$$

 n_{rec} number of reconstructed events, N_{sim} number of simulated events, a_{eff} visible geometric area of the cylindrical can volume for the particular muon track

angular resolution = median angular error

simple quality cut applied ('angular distance' Fit-Prefit $< 20^{\circ}$)

General detector layout

 \rightarrow Used to compare storey layouts

cube detectors with ANTARES OM (10" Hamamatsu PM)

cube: 1 downward looking OM per storey (8000 OMs).

upcube: 1 downward looking and 1 upward looking OM per storey (16000 OMs).

antcube: standard ANTARES storeys (24000 OMs).

results 1

results 2

detector	A_{eff} (km ²	²) with qcuts	Energy Threshold (TeV)
cube	0.40	0.30	280
upcube	0.95	0.85	6.50
antcube	1.21	1.20	2.07
	detector a	angular error ($^{\circ}$)	with qcuts ($^{\circ}$)
	cube	0.22	0.14
	upcube	0.06	0.05
	antcube	0.06	0.06
Energy Threshold \rightarrow Center of bin where A_{eff} with qcuts larger			
		than 1 km ²	

cube detectors with cylindrical OM and 3.5" PM

Properties of 3.5" PM used (the rest is unchanged!):

Diameter/ area (obviously!) = 3.5'' / 0.0054 cm^2 Quantum efficiency ~ 30 % Maximum (just scaled up) Angular acceptance ~ $\cos(\theta)$

Storey layout:

Every PM is treated as seperate OM!

results 3

results 4

result summary - cylOMcubes

detector	A_{eff} (km ²)	with qcuts	Energy Threshold (TeV)	
antcube	1.21	1.10	2.07	
cyIOMcube_25	1.46	1.33	0.37	
cylOMcube_35	1.55	1.41	0.28	
det	ector ang	gular error ($^{\circ}$)	with qcuts ($^{\circ}$)	
ant	tcube	0.06	0.06	
cylON	lcube_25	0.08	0.05	
cylOMcube_35		0.08	0.06	

Produced events with E = 50 TeV, Plotted npe over $\cos(\theta)$

 \rightarrow Large statistical effects because of different d.o.c.a. ! But the principle behaviour can be seen.

events with K40 noise 1

Rate 60 kHz per PM, scaled according to PM area!

events with K40 noise 2

Rate 60 kHz per PM, scaled according to PM area!

events with K40 noise 3

Rate 60 kHz per PM, scaled according to PM area!

result summary - K40 noise

detector	A_{eff} (km ²)	with qcuts
antcube	1.19	0.53
cylOMcube_25	1.20	0.59
cylOMcube_35	1.42	0.55

detector	angular error ($^{\circ}$)	with qcuts ($^{\circ}$)
antcube	24.57	0.06
cylOMcube_25	11.69	0.05
cylOMcube_35	31.47	0.05

Modification of causality filter (D.Zaborov ANTARES-Soft 2002-08)

Standard causality filter:

 $|dt| - dr/v_{light} \le 20 \,\mathrm{ns}$

Large Detectors \rightarrow Large Distances \rightarrow Absorption has to be accounted for !

Two hits time separation defined by myon velocity (\sim c)

 \Rightarrow

Additional causality condition:

 $|| dt | -dr/c_{vacuum} | \leq 500 ns$

results with Dmitrys modified causality filter 1

rate 60 kHz per PM, scaled according to PM area!

results with Dmitrys modified causality filter 2

rate 60 kHz per PM, scaled according to PM area!

results with Dmitrys modified causality filter 3

rate 60 kHz per PM, scaled according to PM area!

result summary - modified causality filter

detec	tor	A_{eff} (km ²)	A_{eff} with qcuts (km ²)
		with qcuts	modified filter
antcube		0.53	0.91
cylOMcube_25		0.59	1.01
cylOMcu	be_35	0.55	0.99
detector	angula with	ar error (°) out qcuts	angular error without qcuts ($^{\circ}$) modified filter
antcube		24.57	0.11
cyIOMcube_25	-	L1.69	0.11
cyIOMcube_35		31.47	0.14

summary and conclusions

- Antares Software has been modified for km3-detectors, with large numbers of PMs per storey.
- Cylindrical OM looks promising.
- Problems when including K40 noise, but...
- Modified causality filter seems to work fine.

next steps

- Realistic simulation of neutrino interactions (including atmosspehric background, showers, ...)
- Find decent(=realistic) geometry.
- Include site parameters in simulation.
- Experiment with heterogenous detector geometries.
- ...