

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Die fensterlose molekulare gasförmige Tritiumquelle des KATRIN-Experiments

Stefanie Mutterer, Institut für Kernphysik, Forschungszentrum Karlsruhe für die KATRIN Kollaboration

- KArlsruhe TRItium Neutrinoexperiment (KATRIN)
- Windowless Gaseous Tritium Source (WGTS)
- Der innere Tritiumkreislauf (Inner Loop)
- Test of Inner Loop (TILO)

IK

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Schule für Astroteilchenphysik, 11. Oktober 2004, Obertrubach-Bärnfels

KATRIN

Kantan Indian Neutrino Ling

Bestimmung der ν_e -Masse durch Vermessung des Beta-Spektrums des Tritiumzerfalls nahe des kinematischen Endpunkts

Anforderungen:

IK

• Niedrige Endpunktsenergie E₀

HVT-TLK

Hohe β-Zerfallsrate

⇒ Tritium

- Starke Quelle
- Hohe Stabilität der Quelle
- Gute Energieauflösung
- Niedriger Untergrund

dN/dE ~
$$(E_0 - E_e) \times [(E_0 - E_e)^2 - m_v^2]^{1/2}$$

 $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$

half life : $t_{1/2} = 12.32 a$ ß end point energy : $E_0 = 18.57 \text{ keV}$

Schule für Astroteilchenphysik, 11. Oktober 2004, Obertrubach-Bärnfels

Stefanie Mutterer, Institut für Kernphysik (IK-FZK)

- Fensterloses (d.h. offenes) Rohr
- L = 10 m, Ø = 90 mm
- B = 3,6 T (Transport der β -Elektronen)
- $\Phi_{magn} = 191 \text{ Tcm}^2$
- $T \approx 27$ K (Kühlmittel flüssiges Neon)

WGTS - Quellencharakteristik

Druckprofil in der Quelle:

HVT-TLK

IK

- Quellinhalt: gasförmiges hochreines (>95%) T₂
- Injektionsrate:
- Säulendichte:
- \approx 5 × 10¹⁹ Moleküle/s ≈ 4,7 Ci/s ≈ 40 g/d
 - ndichte: $\rho d = 5 \times 10^{17} \text{ Moleküle/cm}^2 (\text{auf } 1 \text{ \sc stabil })$

Karlsmine

Indium Neutrino

Tritiumkreislauf im Tritiumlabor Karlsruhe (TLK)

60 Tage/Zyklus (3-5 pro Jahr) mit sehr hohem Tritiumdurchsatz:

Test of Inner Loop (TILO)

• Ziel:

IK

- Demonstration der Regelung

HVT-TLK

- Experimentelle Überprüfung der molekularkinetischen Simulation
- Untersuchung systematischer Fehlerquellen

• Aufbau:

- Betrieb mit D_2 und H_2
- Raumtemperatur
- Kleinere Geometrie, aber gleicher Durchsatz

Zusammenfassung

- Fensterlose Quelle (WGTS):
 - hohe Intensität (4,6×10¹⁰β/s)

HVT-TLK

- hohe Reinheit (> 95 %)
- hohe Stabilität (< 1 ‰)</p>
- Tritiumkreislauf im TLK
- Δρd / ρd < 1 ‰ → TILO

Ausblick:

IK

- Aufbau und Inbetriebnahme TILO in 2004
- Spezifikation und Bestellung WGTS in 2004
- Aufbau des Inner Loops ab 2005
- Inbetriebnahme der WGTS ab 2006