

Simulationen

zum

Elektromagnetischen Design

des KATRIN Hauptspektrometers

- Designkriterien f
 ür das KATRIN-Spektrometer
- Computersimulationen
- Status
- Zusammenfassung

Schule für Astroteilchenphysik Obertrubach-Bärnfels, 11. Okt. 2004

Kathrin Valerius Helmholtz-Institut für Strahlen- und Kernphysik Rheinische Friedrich-Wilhelms-Universität Bonn

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

VIDMAN Virtual Institute for Dark Matter And Neutrinos

1) Einführung:

Tritium-β-Zerfall und Neutrinomasse

Zählrate im Endbereich Trotzdem winziger Anteil: 2×10^{-13} im Intervall 1 eV unterhalb E₀! benötige • hohe Energieauflösung • hohe Luminosität • geringen Untergrund

Tritium hat

niedrige Endpunktenergie von

18.6 keV

→ vergleichsweise hohe

MAC-E-Filter !

1) Einführung:

Das Konzept des MAC-E-Filters

Magnetic Adiabatic Collimation with Electrostatic Filter

- magn. Führung: Feld erzeugt durch 2 supraleitende Spulen
 - → Zyklotronbahnen der Elektronen entlang Magnetfeldlinien
- magnetische Gradientenkraft: adiabatische Transformation

aufgrund der adiab. Invarianten

 $\mu = E_{\perp} / B = const.$

(nicht-relativist. Näherung)

A. Picard et al., Nucl. Instr. Meth. B 63 (1992)

1) Einführung:

Das Konzept des MAC-E-Filters

Magnetic Adiabatic Collimation with Electrostatic Filter

- magn. Führung: Feld erzeugt durch 2 supraleitende Spulen
- adiabatische Transformation

 Analyse der long. Komponente der Elektronenengie E_{II}

durch elektrostatisches Retardierungspotential

- Ermöglicht **Energieauflösung** $\Delta E = E \cdot B_{min} / B_{max} \approx 1 \text{ eV}$
- magn. adiab. Kollimation: großer akzeptierter
 Raumwinkel

Spezifikationen und Designkriterien

<u>Wodurch sind Form und Größe</u> <u>des Hauptspektrometers bestimmt ?</u>

 Energieauflösung benötige extrem präzise Vermessung des ³H-β-Spektrums

$$\frac{0.93 \ eV}{18600 \ eV} = \frac{\Delta E}{E} = \frac{B_{min}}{B_{max}} = \frac{1}{20000}$$

- → großes B_{max} : benötige supraleitende Magnete
- → kleines B_{min} : sollte größer sein als Erdmagnetfeld

Spezifikationen und Designkriterien

Spezifikationen und Designkriterien

in der Analysierebene:

Ø = 9 m !!

Spezifikationen und Designkriterien

Wodurch sind Form und Größe des Hauptspektrometers bestimmt ?

1) Energieauflösung

Spektrometer Spektrometer

2) Gewährleistung der adiabatischen Energietransformation $E_{\perp} \rightarrow E_{\parallel}$

Ist $\mu = E_{\perp} / B$ wirklich konstant? \rightarrow erfordert "langsame" Änderung

der Magnetfeldstärke

 Δ B/B klein entlang jeder Zyklotronschrittlänge Δ L

→ langes Spektrometer !

AL R_{cyc} Zyklotron-

schrittlänge

Studien zur Adiabasie

→ detaillierte Simulationen!

Spezifikationen und Designkriterien

Wodurch sind Form und Größe des Hauptspektrometers bestimmt ?

Energieauflösung 1) Dimensionen des Adiabasiebedingung für Energietransformation 2) Spektrometers 3) Transmissionseigenschaften: Energietransfer $E_{\parallel} \rightarrow E_{\parallel}$ vs. Abnahme von E_I durch elektrostat. Retardierung \Rightarrow E_{II}(x) > 0 in jedem Punkt der Trajektorie Form & Konfig. der Homogenität der elektr. & magnet. Felder Elektroden und 4) entlang der Analysierebene: Magnete Variation des Retardierungspotentials $\Delta U < 0.5 V$ $\Delta B/B < 20\%$ Variation des Magnetfeldes ΔU ΔB U = -18600 V

Ziele und Methoden der Computersimulationen

Zweck der Simulationen: Prüfung und Optimierung des Spektrometerdesigns

Ziele und Methoden der Computersimulationen

Schritt 3:

Bahnverfolgung geladener Teilchen in kombinierten elektr. und magn. Feldern

z.B. mit
 kommerzieller Software
 SIMION 3D Version 7.0

- wurde sehr erfolgreich zur Simulation kleinerer Spektrometer eingesetzt aber: Akkumulation numerischer Fehler beim großen KATRIN Hauptspektrometer
- Entwicklung speziell angepasster C-Programme (F. Glück)

Anwendung 1: Prüfung der Transmissionseigenschaften

- → simuliere Elektron mit (kleiner) Überschussenergie ε über Filterschwelle
- → kontrolliere, ob $E_{II} > \varepsilon$ in jedem Bahnpunkt

Anwendung 1: Prüfung der Transmissionseigenschaften

- → simuliere Elektron mit (kleiner) Überschussenergie ε über Filterschwelle
- → kontrolliere, ob E_{II} > E in jedem Bahnpunkt sonst: zu frühe Retardierung

Anwendung 2: Prüfe Gültigkeit der adiabatischen Näherung $\gamma \mu = const.$

- → Bedingung: Δ B/B klein über jeden Zyklotronschritt mit Länge Δ L
- → adiabatischer Elektronentransport nötig für korrekte Transformation $E_{\parallel} \rightarrow E_{\parallel}$

4) Design des Hauptspektrometers:

Ergebnisse des Simulationsprozesses

4) Design des Hauptspektrometers:

Ergebnisse des Simulationsprozesses

5) Zusammenfassung und Ausblick

- KATRIN: Information über $m(\nu_e)$ aus Hochpräzisionsmessung des ³H- β -Spektrums
- höchste Empfindlichkeit: MAC-E-Filter
 → extrem gute Energieauflösung und hohe Luminosität
- ehrgeiziges Ziel hoher Sensitivität bzgl. m²(v_e) erfordert großen technischen Aufwand (riesiges Spektrometer)
- Komplexer Aufbau → detaillierte Computersimulationen zur Optimierung des EM Designs
- Designstudien der Hauptspektrometer-Tankelektrode abgeschlossen, Drahtelektrodenberechnungen geplant

