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Assumptions

cosmology rests on two fundamental assumptions:
1 when averaged over sufficiently large scales, the observable

properties of the Universe are isotropic
2 our position in the Universe is by no means preferred to any

other (cosmological principle);

such a Universe is homogeneous and isotropic

only relevant interaction is gravity, thus we search for
cosmological models in General Relativity
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Galaxy Distribution
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Microwave Background
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Metric

due to symmetry, the 4 × 4 tensor gµν has ten independent
components: g00, g0i , and gij ; the two fundamental
assumptions greatly simplify the metric

eigentime should equal coordinate time for fundamental
observers:

ds2 = g00dt2 = c2dt2 ⇒ g00 = c2 (1)

isotropy requires g0i = 0 and spherical symmetry for
three-space, thus

ds2 = c2dt2 − a2(t)
[
dw2 + f2

K (w)dω2
]
,with (2)

fK (w) =


K−1/2 sin(K1/2w) (K > 0)
w (K = 0)
|K |−1/2 sinh(|K |1/2w) (K < 0)

(3)
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Symmetry, Foliation
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Redshift

spatial hypersurfaces can expand or shrink, leading to red- or
blueshift

the propagation condition for light, ds = 0, leads to

νe
νo
=
λo

λe
= 1 +

λo − λe

λe
= 1 + z =

a(te)
a(to)

(4)

thus, light is red- or blueshifted by the same amount as the
Universe expanded or shrunk between emission and
observation
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Dynamics

the dynamics of the metric (2) is reduced to the dynamics of
the scale factor a(t); differential equations for a(t) now follow
from Einstein’s field equations:(

ȧ
a

)2

=
8πG

3
ρ −

Kc2

a2 +
Λ

3
,

ä
a
= −

4πG
3

(
ρ +

3p
c2

)
+
Λ

3
(5)

Friedmann’s equations

the Friedmann equations can be combined to yield the
adiabatic equation

d
dt

(
a3ρc2

)
+ p

d
dt

(
a3

)
= 0 (6)

energy conservation
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Remark on Newtonian Dynamics
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Remark on Newtonian Dynamics

(5) can also be derived from Newtonian gravity, except for the
Λ term;

study homogeneous sphere of radius r , ignore surrounding
matter; size of the sphere is arbitrary

pressure term adds to the density because pressure means
kinetic energy of particles, which is equivalent to a mass
density; yields equation of motion

r̈ = −
4πG

3
r
(
ρ +

3p
c2

)
(7)

integrating, using energy conservation, we find(
ṙ
r

)2

=
8πG

3
ρ +

C
c2 (8)
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Forms of Matter

two forms of matter can broadly be distinguished, relativistic
and non-relativistic; they are often called radiation and dust,
respectively

for relativistic bosons and
fermions:

p =
ρc2

3
(9)

for which (6) implies

ρ(t) = ρ0a−4 , (10)

(a = 1 today)

for non-relativistic matter, p = 0
because p � ρc2, and

ρ(t) = ρ0a−3 (11)
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Parameters (1)

Hubble parameter, relative expansion rate:

H(t) ≡
ȧ
a
, H0 ≡ H(t0) = 100 h

km
s Mpc

= 3.2 × 10−18 h s−1

(12)

critical density

ρcr(t) ≡
3H2(t)
8πG

, ρcr0 ≡ ρcr(t0) =
3H2

0

8πG
= 1.9×10−29 h2 g cm−3

(13)

dimension-less density parameters

Ω(t) ≡
ρ(t)
ρcr(t)

, Ω0 ≡
ρ(t0)
ρcr0

, ΩΛ(t) =
Λ

3H2(t)
, ΩΛ0 ≡

Λ

3H2
0

(14)
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Parameters (2)

Friedmann’s equation becomes

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 −

Kc2

a2

]
(15)

specialising to a = 1 allows to solve for K ,

−Kc2 = 1 −Ωr0 −Ωm0 −ΩΛ0 ≡ ΩK (16)

final form for Friedmann’s equation

H2(a) = H2
0

[
Ωr0a−4 + Ωm0a−3 + ΩΛ0 + ΩKa−2

]
≡ H2

0E2(a)
(17)
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Parameters (3)

radiation density exceeded matter density before

aeq =
Ωr0

Ωm0
(18)

the density parameters change with time:

Ωm(a) =
Ωm0

a + Ωm0(1 − a) + ΩΛ0(a3 − a)
,

ΩΛ(a) =
ΩΛ0a3

a + Ωm0(1 − a) + ΩΛ0(a3 − a)
(19)

this implies: Ωm(a)→ 1 and ΩΛ(a)→ 0 for a → 0 regardless
of their present values; if Ωm0 + ΩΛ0 = 1, remains valid for
a < 1
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Parameter Values

Hubble constant h 0.70+0.04
−0.03 CMB + SDSS

0.72 ± 0.07 HST Key Pro-
ject

matter density Ωm0 0.30 ± 0.04 assuming
ΩK = 0

0.41 ± 0.09 free ΩK

cosmological con-
stant

ΩΛ0 0.70 ± 0.04 assuming
ΩK = 0

0.65 ± 0.08 free ΩK

curvature ΩK −0.06 ± 0.04 free ΩK

baryon density h2ΩB 0.023 ± 0.001
ΩB 0.047 ± 0.006

radiation density Ωr0 (2.494 ± 0.007) · 10−5 from CMB
temperature

Hubble time H−1
0 (1.4 ± 0.08) × 1010 yr

matter-radiation
equality

aeq (8.3 ± 1.1) × 10−5
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Age and Expansion of the Universe

since H = ȧ/a, the age of the Universe is determined by

da
dt
= H0aE(a) ⇒ H0t =

∫ a

0

da′

a′E(a′)
(20)

in a flat universe with Ωm0 , 0 and ΩΛ = 1 −Ωm0 , 0:

H0t =
2

3
√

1 −Ωm0
arcsinh


√

1 −Ωm0

Ωm0
a3/2

 (21)

the age of our universe is

t(a = 1) =
0.96
H0
= 1.35 × 1010 yr (22)
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Constraints on the Age of the Universe

the Universe should be older than its oldest parts
three ways of measuring the ages:

1 nuclear cosmo-chronology: decay of long-lived nuclei;
≈ 4.6 Gyr for the Earth, 7 . . . 13 Gyr for the Galaxy;

2 ages from stellar evolution: & 13 Gyr from globular clusters;
3 cooling of white dwarfs: ≈ 10 Gyr

t(a = 1) & 11 Gyr needs H0 . 61 km s−1 Mpc−1 in an
Einstein-de Sitter universe
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Distances

distance measures are no longer unique in general relativity

proper distance Dprop, dDprop = −cdt = −cda/ȧ

comoving distance Dcom, dDcom = dw

angular diameter distance Dang

Dang(z1, z2) =
(
δA
δω

)1/2

= a(z2)fK [w(z1, z2)] (23)

luminosity distance Dlum,

Dlum(z1, z2) =
[
a(z1)
a(z2)

]2

Dang(z1, z2) (24)
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Distance Measures
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The Hubble Constant

galaxies move away from us with velocities proportional to
their distance; Hubble law,

D =
cz
H0

⇒ v = cz = H0D ; (25)

local deviations due to peculiar velocities

accurate distance measurements to distant objects required

“standard candles”: Cepheids, Supernovae, galaxy scaling
relations

result from Hubble Key Project:

H0 = 72 ± 8 km s−1 Mpc−1 (26)
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Measurements of the Hubble Constant
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Horizons

between t1 and t2 > t1, light can travel across comoving
distance

∆w(t1, t2) =
∫ t2

t1

cdt
a(t)
= c

∫ a(t2)

a(t1)

da
aȧ
∝ an/2−1 if ρ ∝ ρ0a−n

(27)
thus, if n > 2, light can only travel by a finite distance; there
exists a particle horizon

Hubble radius at aeq, important for structure formation

rH,eq =
c

H(aeq)
=

c
H0

a3/2
eq

√
2Ωm0

(28)
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Chapter III

Thermal Evolution
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Thermal Evolution

1 Assumptions
2 Properties of Ideal Quantum Gases
3 Adiabatic Expansion of Ideal Gases
4 Particle Freeze-Out
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Assumptions

the universe expands adiabatically – isotropy requires the
universe to expand adiathermally; entropy generation is
completely negligible

thermal equilibrium can be maintained despite the expansion

the cosmic “fluids” can be treated as ideal gases

those assumptions are the starting point of our
considerations; they need to be verified as we go along
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Properties of Ideal Quantum Gases

for relativistic boson and fermion gases in thermal equilibrium:

nB = 10gB

(
T
K

)3

cm−3 = 1.6 × 1013gB

(
kT
eV

)3

cm−3 ,

nF =
3
4

gF

gB
nB

uB = 3.8 × 10−15gB

(
T
K

)4 erg
cm3 = 2.35 × 10−3gB

(
kT
eV

)4 erg
cm3 ,

uF =
7
8

gF

gB
uB , PB =

uB

3
, PF =

uF

3

sB

k
= 36gB

(
T
K

)3

cm−3 = 5.7 × 1013gB

(
kT
eV

)3

cm−3 ,

sF =
7
8

gF

gB
sB (29)
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Adiabatic Expansion of Ideal Gases

for relativistic boson or fermion gases in thermal equilibrium

P =
u
3
=

E
3V

(30)

first law of thermodynamics implies

dE = −PdV = 3d(PV) ⇒ P ∝ V−4/3 (31)

i.e. γ = 4/3; for non-relativistic ideal gases, γ = 5/3

temperature scaling:

T ∝ P1/4 ∝ V−1/3 ∝ a−1 (rel.)

T ∝ PV ∝ V−5/3+1 ∝ a−2 (non-rel.) (32)
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Particle Freeze-Out

expansion time-scale during radiation-dominated era

texp ≈ (Gρ)−1/2 ∝ a−2 (33)

collision rate and time-scale

Γ ≡ n〈σv〉 ∝ n ∝ T3 ∝ a−3 , tcoll = Γ
−1 ∝ a3 (34)

ratio texp/tcoll ∝ a−1, thermal equilibrium can be maintained
despite the expansion at early times; as the universe keeps
expanding, thermal equilibrium breaks down when Γ � H

relativistic particle species retain their thermal-equilibrium
density!
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Chapter IV

Recombination and Nucleosynthesis
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Recombination and Nucleosynthesis

1 Neutrino Background
2 Photons and Baryons
3 Recombination Process
4 Nucleosynthesis
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The Neutrino Background

weak interaction
ν + ν̄↔ e+ + e− (35)

freezes out when temperature drops to
Tν ≈ 1010.5 K ≈ 2.7 MeV

electron-positron pairs annihilate when temperature drops
below T ≈ 2mec2 ≈ 1 MeV ≈ 1010 K their decay heats the
photon gas, but not the neutrinos

photon temperature is ≈ 40% higher than neutrino
temperature:

Tγ =
(
11
4

)1/3

Tν (36)
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Photons and Baryons

number density of baryons today is

nB =
ρB

mp
=
ΩB

mp

3H2
0

8πG
= 1.1 × 10−5ΩB h2 cm3

ΩBh2 ≈ 0.02 (37)

the photon number density today is

nγ = 407 cm−3 (38)

their ratio is constant; about one billion photons per baryon!

η ≡
nB

nγ
= 2.7 × 10−8ΩBh2 (39)
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The Recombination Process

approximation: Saha’s equation; ionisation fraction x is

x2

1 − x
=

√
π

4
√

2ζ(3)η

(
mec2

kT

)3/2

e−χ/kT ≈
0.26
η

(
mec2

kT

)3/2

e−χ/kT

(40)

for recombination to be considered finished, x � 1 and
x2/(1 − x) ≈ x2; since 1/η is a huge number, kT � χ is
required for x to be small; for example, putting x = 0.1 yields
kTrec = 0.3 eV, or

Trec ≈ 3500 K (41)

since χ = 13.6 eV, one would naively expect Trec ≈ 105 K; the
very large photon-to-baryon ratio 1/η delays recombination
considerably
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Recombination
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The Spectrum of the CMB
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Nucleosynthesis

protons and neutrons form when kT ≈ 1 GeV; remain in
equilibrium until weak interactions freeze out at kT ≈ 800 keV;
baryon-to-photon ratio η is the only relevant parameter,

η = 1010η10 , η10 = 273ΩBh2 (42)

further fusion builds upon two-body processes, e.g.

n + p → 2H + γ , 2H + 2H→ 3He + n ,
3He + 2H→ 4He + p , 4H + 3H→ 7Li + γ (43)

deuterium is crucial! (Gamow criterion)

the baryon density implied by Big-Bang nucleosynthesis is

ΩBh2 = 0.019 ± 0.0024 (44)
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Light-Element Abundances
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Chapter V

The Growth of Perturbations
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The Growth of Perturbations

1 Newtonian Equations
2 Perturbation Equations
3 Density Perturbations
4 Velocity Perturbations
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Newtonian Equations

continuity equation (mass conservation)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 (45)

Euler’s equation (momentum conservation)

∂~v
∂t
+ (~v · ~∇)~v = −

~∇p
ρ
+ ~∇Φ (46)

Poisson equation
∇2Φ = 4πGρ (47)
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Perturbation Equations

decompose density and velocity,

ρ(t , ~x) = ρ0(t) + δρ(t , ~x) , ~v(t , ~x) = ~v0(t) + δ~v(t , ~x) (48)

Hubble flow, peculiar velocity:

~v = ~̇r = ȧ~x + a~̇x = H~r + a~̇x = ~v0 + δ~v (49)

comoving coordinates ~x = ~r/a, comoving peculiar velocities
~u ≡ δ~v/a, density contrast δ = δρ/ρ0

we are now left with the three equations

δ̇ + ~∇ · ~u = 0 , ~̇u +H~u = −
~∇δp
a2ρ0

+
~∇δΦ

a2 , ∇
2δΦ = 4πGρ0a2δ

(50)
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Density Perturbations

combining these equations, decomposing δ into plane waves
yields

δ̈ + 2Hδ̇ = δ
(
4πGρ0 −

c2
s k 2

a2

)
(51)

sound speed c2
s = δp/δρ

assume large perturbations,

c2
s k 2

a2 � 4πGρ0 ⇒ k � a

√
4πGρ0

cs
(52)

linear growth factor

δ(a) = δ0D+(a) (53)
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Structure Growth and Dark Matter
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The Amount of Dark Matter
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Velocity Perturbations

ignoring pressure gradients, the second equation (50) says

~̇u + H~u =
~∇δΦ

a2 (54)

defining

f (Ω) ≡
d ln D+(a)

d ln a
≈ Ω0.6 , (55)

the peculiar velocity field can be written as

δ~v = a~u =
2f (Ω)
3aHΩ

~∇δΦ (56)
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The Local Cosmic Neighbourhood
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Chapter VI

Statistics and Non-Linear Evolution
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Statistics and Non-Linear Evolution

1 Power Spectra
2 Evolution of the Power Spectrum
3 The Zel’dovich Approximation
4 Nonlinear Evolution
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Power Spectra

variance of δ in Fourier space defines the power spectrum
P(k ),

〈δ̂(~k )δ̂∗(~k ′)〉 ≡ (2π)3P(k )δD(~k − ~k ′) (57)

variance of δ in real space depends on scale:

δ̄(~x) ≡
∫

d3yδ(~x)WR (|~x − ~y |) (58)

the variance of the filtered density-contrast field is

σ2
R = 4π

∫
k 2dk
(2π)3 P(k )Ŵ2

R (k ) (59)

σ8 is often used for normalising the power spectrum
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Smoothing
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Evolution of the Power Spectrum

modes entering the horizon (Hubble radius) while radiation
dominates are relatively suppressed compared to larger
modes which enter the horizon afterwards

assuming that the fluctuation power entering the horizon
should not depend on time, and working out the suppression
for k > k0 yields

P(k ) ∝
{

k (k < k0)
k−3 (k � k0)

(60)

this is the shape of the spectrum for cold dark matter (CDM);
hot dark matter (HDM) cuts off the spectrum exponentially
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Growth Suppression
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The Observed Power Spectrum
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The Zel’dovich Approximation

a kinematical treatment for following density evolution into the
non-linear regime was invented by Zel’dovich; particle
trajectories are approximated by

~r = a
[
~x +

~u
Hf (Ω)

]
, Fij ≡

∂ri

∂xj
(61)

important consequence is the probability distribution
p(λ1, λ2, λ3) for the eigenvalues of the deformation tensor Fij :

p(λ1, λ2, λ3) ∝ |(λ3 − λ2)(λ3 − λ1)(λ2 − λ1)| (62)

probability for two eigenvalues of Fij to be equal is zero,
implying anisotropic collapse! (starting from Gaussian random
field)
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Nonlinear Evolution

correct treatment of non-linear evolution requires numerical
simulations; decompose the matter distribution into particles
whose equations of motion are solved

non-linear evolution causes mode coupling: while modes of
different wave lengths evolve independently during linear
evolution, mode coupling in the non-linear evolution moves
power from large to small scales as structures collapse

even if the original density perturbation field δ is Gaussian, it
must develop non-Gaussianities during non-linear evolution

typical behaviour seen in numerical simulations shows the
formation of “pancakes”, filaments and voids
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Simulations
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Chapter VII

Structures in the Cosmic Microwave Background
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Structures in the Cosmic Microwave Background

1 Simplified Theory of CMB Temperature Fluctuations
2 CMB Power Spectra and Cosmological Parameters
3 Foregrounds
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Simplified Theory: Dipole, Fluctuation Level

Earth’s motion causes temperature dipole,

T (θ) = T0

(
1 +

v
c

cos θ
)
+ O

(
v2

c2

)
(63)

δ & 1 today implies

δ(aCMB) =
δ(a = 1)

D+(aCMB)
& a−1

CMB ≈ 10−3 (64)

and similar temperature fluctuations in the CMB

such fluctuations are not found; based on the assumption of
weakly interacting dark matter, temperature fluctuations are
expected to be δT/T ≈ 10−5: detected by COBE in 1992
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Dipole
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Simplified Theory: Sachs-Wolfe Effect, Acoustic
Oscillations

perturbation equation for relative temperature fluctuation
Θ ≡ δT/T0:

¨̂Θ +
c2k 2

3
Θ̂ −

k 2

3
δΦ̂ −

δ ¨̂Φ
c2 = 0 (65)

for small k : Sachs-Wolfe-effect, Θ̂ ∝ δΦ̂/c2

otherwise, oscillator equation for Θ̂ − δΦ̂/c2 ≡ θ̂; solution
assuming ˙̂θ = 0 at t = 0

θ̂(trec) = θ̂(0) cos
[

ck
√

3
trec

]
(66)

c/
√

3 trec ≡ rs: sound horizon; oscillations for k > 2π/rs
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Simplified Theory: Silk Damping

damping occurs due to photon diffusion; diffusion scale:

λD =
√

Nλ , λ =
1

neσT
(67)

number of collisions per unit time is dN = neσTcdt ; thus,

λ2
D =

∫ trec

0

cdt
neσT

(68)

structures smaller than the diffusion length are damped,
hence damping sets in for wave numbers

k > kD =
2π
λD

(69)
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CMB Spectra
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Simplified Theory: Polarisation

Thomson scattering is anisotropic; its differential cross section
is

dσ
dΩ
=

3σT

8π

∣∣∣~e′ · ~e∣∣∣2 (70)

~e′ and ~e are the unit vectors of the incoming and outgoing
electric fields

if infalling radiation has quadrupolar intensity anisotropy,
scattered radiation is polarised because it has different
intensities in its two orthogonal polarisation directions

CMB is expected to be linearly polarised to some degree; the
intensity of the polarised light should be of order 10% that of
the unpolarised light, i.e. it should have an amplitude of order
10−6 K

Matthias Bartelmann The Cosmological Standard Model and its Parameters



Polarisation
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Instruments
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Measurements
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CMB Power Spectra and Cosmological Parameters

CMB temperature TCMB 2.726 ± 0.002 K
total density Ωtot 1.02 ± 0.02
matter density Ωm 0.27 ± 0.04
baryon density Ωb 0.044 ± 0.004
Hubble constant h 0.71+0.04

−0.03
baryon-to-photon ratio η 6.1+0.3

−0.2 × 10−10

fluctuation amplitude σ8 0.84 ± 0.04
scalar spectral index ns 0.93 ± 0.03
decoupling redshift zdec 1089 ± 1
age of the Universe t0 13.7 ± 0.2 Gyr
age at decoupling tdec 379+8

−7 kyr
reionisation redshift (95% c.l.) zr 20+10

−9
reionisation optical depth τ 0.17 ± 0.04
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Foregrounds

CMB shines through the entire visible universe on its way to
us

microwave emission from our own Galaxy: warm dust in the
plane of the Milky Way with a temperature near 20 K;
synchrotron emission from electrons gyrating in the Galactic
magnetic field; thermal bremsstrahlung from ionised
hydrogen; line emission from molecules like CO

hot plasma in galaxy clusters inverse-Compton scatters
microwave background photons to higher energies:
Sunyaev-Zel’dovich effect

point source appearing in the microwave background, such as
high-redshift galaxies, planets, asteroids, possibly comets in
the Solar System, dust in the plane of the Solar System
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Foreground Components

incoming,
low-energy photon

outgoing, higher-
energy photon

hot electrons in
galaxy cluster

observer
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Planck
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Chapter VIII

Cosmological Inflation
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Cosmological Inflation

1 Problems
2 Inflation
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Problems

angular size of the particle horizon at recombination is

θrec =
arec∆w(0, arec)

Dang(0, zrec)
≈

√
Ω0arec ≈ 1.7◦

√
Ω0 (71)

causal connection? horizon problem

evolution of flatness:

|Ωtotal − 1| ∝
{

t radiation-dominated era
t2/3 early matter-dominated era

(72)

tiny deviations of Ωtotal from unity grow rapidly! flatness
problem

where do structures originate from in the first place?
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Horizon Problem
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Inflation: Idea

universe can be driven towards flatness by accelerated
expansion, ä > 0; this seems incompatible with gravity

Friedmann’s equation allows accelerated expansion if

ρc2 + 3p < 0 , p < −
ρc2

3
(73)

simple scalar field with Lagrangian

L =
1
2
∂µφ∂

µφ − V(φ) (74)

has negative pressure if

φ̇2 < V(φ) (75)
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Inflation: Slow Roll, Conditions

successful inflation under slow-roll conditions:

ε ≡
1

24πG

(
V ′

V

)2

� 1 , η ≡
1

8πG

(
V ′′

V

)
� 1 (76)

for solving the flatness problem, increase in the scale factor by
a factor of approximately e60 is necessary; this would at the
same time solve the horizon (or causality) problem

it is assumed that the inflaton field can decay through some
coupling to “ordinary” matter: reheating
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Slow Roll
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Inflation: Structure Formation

inflaton field must have undergone vacuum fluctuations

once inflation sets in, they are quickly driven outside of the
horizon, where they “freeze in” because they lack causal
contact

the (primordial) density power spectrum predicted by inflation
is

Pi(k ) ∝ k n , n . 1 (77)

density fluctuations are expected to be Gaussian because of
the central limit theorem

inflation provides a possibility for solving the horizon and
flatness problems and provides a natural explanation for the
origin of structures in the universe
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Causality and Structure Formation
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Chapter IX

Dark Energy
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Dark Energy

1 Expansion of the Universe
2 Modified Equation of State
3 Effects on Cosmology
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Expansion of the Universe

CMB measurements: universe is spatially flat, i.e. its total
energy density equals the critical density

dark and baryonic matter density, dark and baryonic
contributes approximately 30% to the total energy density;
abundance of light elements requires the baryon density to be
much lower

supernovae of type Ia: fixed amount of “explosives” blows up;
they form a class of “standard candles”

comparing absolute luminosity and apparent brightness,
luminosity distance as a function of redshift can be infered

high-redshift supernovae show transition from decelaration to
acceleration near z ∼ 1
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Type-Ia Supernovae
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Modified Equation of State

cosmological constant is physically dissatisfactory; as for
inflation, assume scalar field (“cosmon”, “quintessence”) with
negative pressure,

p = wρc2 , w < −
1
3

(78)

if w is constant,
ρQ = ρQ0a−3(1+w) (79)

Friedmann equation becomes

H2(a) = H2
0

[
Ωm0a−3 + (1 −Ωm0 −ΩQ0)a−2 + ΩQ0a−3(1+w)

]
(80)
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Equation of State
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Effects on Cosmology

cosmic expansion during nucleosynthesis is tightly
constrained by light-element abundances

effects on the CMB: width of the recombination shell, amount
of Silk damping

modified angular-diameter and luminosity distances affect
supernovae of type Ia, apparent size of CMB fluctuations,
cosmic volume, overall geometry of the universe, and
gravitational lensing

the growth factor is modified; structures form earlier in
quintessence compared to cosmological-constant models

dark-matter haloes tend to be denser, which may have strong
effects on their appearance
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Growth Factor, Distances
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Cosmic Concordance
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