The broadband spectrum of Cygnus X-1

Sonja Fritz¹ Jörn Wilms², Katja Pottschmidt³, Mike Nowak⁴, Andrea Santangelo¹

¹Institut für Astronomie und Astrophysik, Universität Tübingen, Germany
²Dr. Remeis Sternwarte, Astronomisches Institut der FAU Erlangen-Nürnberg, Bamberg, Germany
³Center for Astrophysics and Space Sciences, University of California at San Diego, USA
⁴MIT-CXC, Cambridge MA, USA

Astroteilchenschule, 7th Oct. 2006

The broadband spectrum of Cyg X-1

AQ (A

The broadband spectrum of Cygnus X-1

Sonja Fritz¹ Jörn Wilms², Katja Pottschmidt³, Mike Nowak⁴, Andrea Santangelo¹

¹Institut für Astronomie und Astrophysik, Universität Tübingen, Germany
²Dr. Remeis Sternwarte, Astronomisches Institut der FAU Erlangen-Nürnberg, Bamberg, Germany
³Center for Astrophysics and Space Sciences, University of California at San Diego, USA
⁴MIT-CXC, Cambridge MA, USA

Astroteilchenschule, 7th Oct. 2006

The broadband spectrum of Cyg X-1

AQ (A

OUTLINE

Cygnus X-1

OBSERVATIONS

- AIMS OF THE ANALYSIS
- **BROADBAND CONTINUUM**
- **IRON LINE**
- SUMMARY AND OUTLOOK

Sac

∍

< 🗆 🕨

THE CYGNUS X-1 SYSTEM

GENERAL

- discovered 1964 during a rocket flight
- distance 2.5 kpc
- orbital period 5.6 days
- accretion through focused wind

OPTICAL COMPANION HDE 226868

- O9.7lab
- $\bullet~M\approx 18\,M_\odot$
- $R\approx 17\,R_{\odot}$

Compact Object

- $M\approx 10\,M_{\odot}$
- $R_S \approx 30 \, km$

Sonia Fritz

Astroteilchenschule, 7th Oct. 2006

Observations

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

4 keV -1 MeV

ESA

The broadband spectrum of Cyg X-1

Astroteilchenschule, 7th Oct. 2006

Observations

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

4 keV -1 MeV

Astroteilchenschule, 7th Oct, 2006

SQ C

ESA

Observations

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

THE OBSERVATIONS

Cyg X-1 was observed simultaneously by

- XMM-Newton (total observation time: ~40 ksec)
- RXTE (total observation time: ~152 ksec)
- INTEGRAL (total observation time: ~320 ksec)

for 4 times in November / December 2004

2.8–10 keV	3–120 keV	4 keV – 1 MeV
XMM-Newton	RXTE	INTEGRAL

 \implies one of the best resolved broadband spectra ever obtained

AQ (A

1 D 1 4

What do we want to get out of the data?

2 main parts of analysis:

BROADBAND CONTINUUM

- constrain models for Comptonizing plasma
 ⇒ search for / study effects of non-thermal Comptonization
- constrain amount of Compton reflection

⇒ INTEGRAL, RXTE

IRON LINE

- search for structure of the Fe Kα line (relativistic broadening)
- determine shape and strength of the Fe K edge

\implies XMM-Newton

< n

Astroteilchenschule, 7th Oct. 2006

CYGNUS X-1

2 Observations

3 Aims of the Analysis

BROADBAND CONTINUUM

5 IRON LINE

6 Summary and Outlook

< n

DQ CV

How to model the broadband continuum

Phenomenological Approach

Modeling the spectrum by a broken powerlaw with exponential cutoff Main fit parameters of the model: Γ_1 , E_{break} , Γ_2 , E_{cut} , E_{fold}

Additional to all models

Interstellar absorption Fe K α line (modeled as Gaussian)

< n

AQ (A

How to model the broadband continuum

Phenomenological Approach

Modeling the spectrum by a broken powerlaw with exponential cutoff Main fit parameters of the model: Γ_1 , E_{break} , Γ_2 , E_{cut} , E_{fold}

"Physical" Approach

4 🗖 🕨 4

Modeling the spectrum by eqpair (with seed photons from diskpn, reflection included) Main fit parameters of the model: kT_{in} , ℓ_h/ℓ_s , (ℓ_{nth}/ℓ_h) , τ_p , $\Omega/2\pi$, ξ

Additional to all models

Interstellar absorption Fe K α line (modeled as Gaussian)

Astroteilchenschule, 7th Oct. 2006

EQPAIR FITS

Typical values $kT_{in} \sim 1.1 \text{ keV}$ $\ell_h/\ell_s \sim 3.1$ $\tau_p \sim 0.7$ $\Omega/2\pi \sim 0.28$ $\xi \sim 0$ $E_{K\alpha} \sim 6.3 \text{ keV}$ $\sigma_{K\alpha} \sim 0.7 \text{ keV}$ χ^2_{red} between 1.73

and 1.19

Astroteilchenschule, 7th Oct. 2006

AQ C

∍

EQPAIR Fits

Comparison with previous results

\Rightarrow good agreement with previous results

Sonja Fritz

The broadband spectrum of Cyg X-1

Astroteilchenschule, 7th Oct. 2006

Sac

Is there a hard tail?

eqpair model: indications for a hard tail above ~ 300 keV but: rather poor statistics with *SPI* in individual observations

< 🗆

nac

Astroteilchenschule, 7th Oct. 2006

Fritz et al. (in prep.)

Is there a hard tail?

eqpair model: indications for a hard tail above ~ 300 keV but: rather poor statistics with *SPI* in individual observations

⇒ combine all 4 observations (although Cyg X-1 was highly variable during the observation time)

Astroteilchenschule, 7th Oct. 2006

How to model a hard tail?

Shape of the Comptonization spectrum changes according to energy distribution of the electrons

 \implies Hard tail could be modeled as non-thermal electron distribution in the hot plasma

$$\ell_{h} = \ell_{th} + \ell_{nth}$$

Coppi (1999)

Astroteilchenschule, 7th Oct. 2006

TIME AVERAGED SPECTRA - THERMAL MODEL

Thermal Model:

Residuals above 300 keV still present in the averaged spectrum

$$\chi^2_{\rm red}$$
 = 1.52 (341 dof)

< 🗆

nac

Astroteilchenschule, 7th Oct. 2006

Fritz et al. (in prep.)

TIME AVERAGED SPECTRA - HYBRID MODEL

Hybrid Thermal / Non-thermal Model:

Best fit: $\ell_{nth}/\ell_h \sim 0.78$

⇒ 78% of the power supplied to electrons in corona is in the non-thermal component

$$\chi^2_{\rm red}$$
 = 1.44 (340 dof)

SQ C

Astroteilchenschule, 7th Oct. 2006

Fritz et al. (in prep.)

CYGNUS X-1

2 Observations

- 3) Aims of the Analysis
- 4 BROADBAND CONTINUUM

6) SUMMARY AND OUTLOOK

< n

DQ CV

Iron Line

Relativistically broadened Iron Lines

Fe K α line originates from material just a few gravitational radii from the black hole

 \Longrightarrow profile is shaped by (relativistic) Doppler shifts and gravitational redshift effects

Sac

고 물고 고 물

XMM-Newton Spectrum

best fit with a narrow and a relativistic line:

- Power law
 - $\Gamma=1.90\pm0.01$
- narrow line
 - $E=6.52\pm0.02\,\mathrm{keV}$

 $\sigma = \mathrm{80}\pm\mathrm{35\,eV}$

equivalent width=14 eV

• relativistic line (Kerr) $E = 6.76 \pm 0.1 \text{ keV}$ emissivity $\propto r^{-4.3\pm0.1}$ equivalent width=400 eV

$$\chi^2_{\rm red}$$
 = 1.3 (149 dof)

XMM-Newton Spectrum

best fit with a narrow and a relativistic line:

- Power law
 - $\Gamma=1.90\pm0.01$
- narrow line
 - $E = 6.52 \pm 0.02 \, \text{keV}$

not= yetsfinalized

• relativistic line (Kerr) $E = 6.76 \pm 0.1 \text{ keV}$ emissivity $\propto r^{-4.3\pm0.1}$ equivalent width=400 eV

$$\chi^2_{\rm red}$$
 = 1.3 (149 dof)

CYGNUS X-1

OBSERVATIONS

3 Aims of the Analysis

BROADBAND CONTINUUM

5 IRON LINE

SUMMARY AND OUTLOOK

< n

DQ CV

SUMMARY AND OUTLOOK

- we got one of the best resolved broadband spectra
- comparison with previous results ⇒ good agreement
- Comptonizing plasma is most likely a hybrid thermal / non-thermal plasma
- confirmation of relativistically broadened Iron Line

Next steps:

- \implies Final calibration of *XMM-Newton* Modified Timing Mode
- \implies Combination of all 3 instruments to model the whole broadband spectrum

Sac

《日》 《周》 《문》 《王》

Summary and Outlook

The broadband spectrum of Cyg X-1

Astroteilchenschule, 7th Oct. 2006

5990

₹