Analysis of VHE Sources with INTEGRAL

Schule für Astroteilchenphysik 2006 Obertrunbach - Bärnfels

> Agnes Hoffmann D. Horns, A. Santangelo

Institut für Astronomie und Astrophysik Universität Tübingen

09th October, 2006

VHE sources with INTEGRAL

10/09/06 1 / 20

A (10) A (10) A (10)

Outline

I Introduction Instruments and Data Analysis Very High Energy γ-rays X-rays

II Physical Processes

III Objects TeV plerions Binary systems

< A

VHE γ -rays: High Energy Stereoscopic System

- System of 4 Imaging Atmospheric Cherenkov Telescopes arranged in corners of 120m square
- Imaging Cherenkov technique:

A. Hoffmann (IAAT)

VHE γ + atmospheric atoms \rightarrow air shower $\rightarrow \gamma$

► Field of view (FoV): ≈ 5°, spacial resolution = 0.1°

VHE γ -rays: Observations

Galactic Longitude (°)

H.E.S.S. galactic plane (inner 60 degrees) (Aharonian et. al, 2006)

- Shell-type supernova remnants (SNR)
- Pulsar, Pulsar nebulae & Pulsar Wind Nebulae (PWN)
- Binary systems
- Molecular clouds
- Active Galactic Nuclei (AGN)

< ロ > < 同 > < 回 > < 回 >

Unidentified Sources

X-rays: INTErnational Gamma - Ray Astrophysics Laboratory

- IBIS / ISGRI
 - energy range: 15 keV 10 MeV
 - $8.3^{\circ} \times 8^{\circ}$ FoV (fully coded)
 - 12' angular resolution
 - 8 keV @ 100 keV spectral resolution

A. Hoffmann (IAAT)

VHE sources with INTEGRAL

10/09/06 5 / 20

Instruments and Data Analysis

INTEGRAL Data Analysis

- public INTEGRAL data
- focus on IBIS / ISGRI data analysis
- official Off-line Science Analysis
 OSA Version 5.0 and 5.1 (http://isdc.unige.ch)

Outline

l Introduction Instruments and Data Analysis Very High Energy γ-rays X-rays

II Physical Processes

III Objects TeV plerions Binary systems

VHE sources with INTEGRAL

10/09/06 7 / 20

Some physical processes of Photon Production

VHE γ -rays: interaction of relativistic electrons or protons with molecules of ambient material or fields:

- Synchrotron radiation: charged relativistic particles are accelerated in B-field
- Bremsstrahlung: charged particles are accelerated in strong E-field
- ▶ Pion decay: $p + gas \rightarrow \pi^0, \pi^{\pm} + ...$ e.g.: $\pi^0 \rightarrow 2\gamma, E_{\gamma} \approx 70 MeV$
- Inverse compton scattering: scattering of photons off charged particles: eγ → eγ

Some physical processes of Photon Production

VHE γ -rays: interaction of relativistic electrons or protons with molecules of ambient material or fields:

- Synchrotron radiation: $\rightarrow J \propto u_B^2 \cdot n_e$
- Bremsstrahlung: $\rightarrow J \propto n_H \cdot n_e$
- Pion decay: $\rightarrow J \propto n_H \cdot n_p$
- Inverse compton scattering: $\rightarrow J \propto u_{seed} \cdot n_e$

 \Rightarrow ambiguous determination of γ production mechanism (leptonisch/hadronisch) only possible via analyse of multiwavelength spectra

10/09/06 8 / 20

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Electron: Radiative loss, photon production & timescales

Electron: Radiative loss, photon production & timescales

TeV plerions Binary systems

Outline

Introduction Instruments and Data Analysis Very High Energy γ-rays X-rays

II Physical Processes

III Objects TeV plerions Binary systems

VHE sources with INTEGRAL

10/09/06 10 / 20

TeV plerions Binary systems

TeV Plerions

Rotation powered pulsar wind nebulae (RPWN)

- contain isolated neutron star
- rotational energy of NS (partially)
 - \rightarrow relativistic wind of particles
- wind fuels extended non-thermal emission region
- relativistic standing shock = site of particle acceleration

TeV plerions Binary systems

TeV Plerions

Rotation powered pulsar wind nebulae (RPWN)

- contain isolated neutron star
- rotational energy of NS (partially)
 - \rightarrow relativistic wind of particles
- wind fuels extended non-thermal emission region
- relativistic standing shock = site of particle acceleration
 - hard X-ray (20 100 keV) & soft gamma-ray band (0.1 – 100 MeV) = crucial energy window
 - expected predominantly synchrotron emission of accelerated e⁻
 - Iimited life-time of electrons emitting in the hard X-ray

< 回 > < 三 > < 三 >

TeV plerions Binary systems

TeV Plerions

Rotation powered pulsar wind nebulae (RPWN)

- contain isolated neutron star
- rotational energy of NS (partially)
 - \rightarrow relativistic wind of particles
- wind fuels extended non-thermal emission region
- relativistic standing shock = site of particle acceleration
 - hard X-ray (20 100 keV) & soft gamma-ray band (0.1 – 100 MeV) = crucial energy window
 - expected predominantly synchrotron emission of accelerated e⁻
 - Iimited life-time of electrons emitting in the hard X-ray

 \Rightarrow emission of unpulsed hard X-rays only in a very confined volume close to the acceleration site

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

I Introduction II Physical Processes III Objects TeV plerions Binary systems

TeV Plerions - X-ray Observations II

- Galactic plane survey of INTEGRAL provides data of large fraction of the Galactic disk
- few per cent of the sources detected by the INTEGRAL have been identified to be young and middle-aged RPWN

(PSR J0534+2200 – Crab Nebula) PSR J1513-5908 – MSH 15-52 PSR J0835-4510 – Vela PSR J1420-6048 – Kookaburra

イロト イポト イヨト イヨト

TeV plerions Binary systems

Observations: TeV Plerions - MSH 15-52

Aharonian et al. 2005

15h12m RA (hours) Excess (a.u.

50

Young RPWN, 150 ms pulsar Seen in the X-ray, gamma-ray and radio energy band Emission seen by INTEGRAL possibly extended (Terrier et al. 2006)

VHE sources with INTEGRAL

10/09/06 13 / 20

< ロ > < 同 > < 回 > < 回 > < 回 >

Aharonian et al. 2006b

most of the emission above 20 - 60 keV is unpulsed (Hermsen et al.) No extended emission in hard X-rays from Vela X region (Horns et al. 2006) Spectral cut-off in the energy range between 10 - 20 keV

VHE sources with INTEGRAL

10/09/06 13 / 20

TeV plerions Binary systems

Observations: TeV Plerions - Kookaburra

PSR J1420-6048

A. Hoffmann (IAAT)

Aharonian et al. 2006c

Faint signal in energy range of 20 - 40 keV: 5σ at position of pulsar No INTEGRAL counterpart to the "Rabbit" RPWN candidate

(Roberts et al. 1999, Ng 2005)

→ ∃ → < ∃ →</p>

10/09/06 13 / 20

TeV plerions Binary systems

Binary Systems - VHE Observations

- 2+1 binary systems were detected as point sources in VHE energy range:
 - LS 5039 (H.E.S.S.)
 - LSI +61°303 (MAGIC)
 - PSR B1259-63
- both also detected in x-rays & radio
- Microquasar (?)

TeV plerions Binary systems

Binary Systems - VHE Observations

- 2+1 binary systems were detected as point sources in VHE energy range:
 - ► LS 5039 (H.E.S.S.) ← periodic time variablility
 - LSI +61°303 (MAGIC) ← first detection of time variablility of VHE γ-rays
 - PSR B1259-63

Microquasar (?)

both also detected in x-rays & radio

(de Naurois 2006)

Binary Systems - VHE Observations

- 2+1 binary systems were detected as point sources in VHE energy range:
 - ► LS 5039 (H.E.S.S.) ← periodic time variablility
 - LSI +61°303 (MAGIC) ← first detection of time variablility of VHE γ-rays
 - $\blacktriangleright \text{ PSR B1259-63} \rightarrow \text{Matthias' talk}$
- both also detected in x-rays & radio
- Microquasar (?)

Summary & Conclusions

- TeV plerions
 - Kookaburra: INTEGRAL pulsar is proved
 - Indication that TeV plerions seen with INTEGRAL include young and middle aged RPWN (preliminary, systematic study needed)
- Binary systems
 - LS 5039 is detected as faint source in INTEGRAL
- INTEGRAL detection = additional indicator for the indification as PWN
- Unpulsed hard x-rays presumably trace the on-going acceleration at relativistic standing shock

10/09/06 15 / 20

< 回 > < 三 > < 三 >