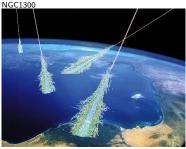
Cherenkov light in extensive air showers

Ilya Bekman

Phys. Inst. IIIA

SPONSORED BY THE

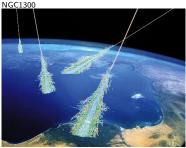
Federal Ministry of Education and Research



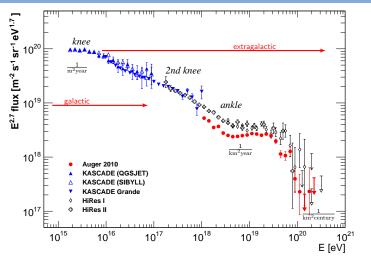
7. Oktober, 2011 - Astroparticle School - Obertrubach-Bärnfels

Outline

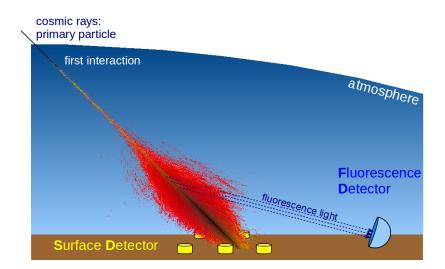
- Detection of Cosmic Rays
- Pierre Auger Observatory
- HEAT low energy enhancement
- Simulation of extensive air showers
- Cherenkov light production
 - Effect of geomagnetic field
- Conclusion & Outlook



Motivation


Cosmic Rays - open questions:

- Origin?
 - Galactic and extragalactic
- Composition?
 - From protons to heavy elements
- Energy?
 - Study shape of spectrum



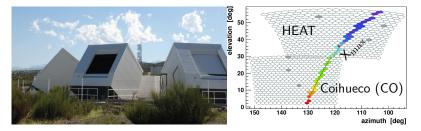
Cosmic rays energy spectrum


- very low flux at high energies \Rightarrow large-area telescopes
- Pierre Auger Observatory: area 3000 km²
- HEAT enhancement for energy down to 10¹⁷ eV

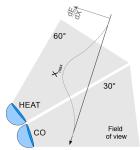
Detection of ultra high energy cosmic rays

Hybrid detection technique

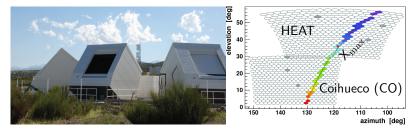
Pierre Auger Observatory: hybrid detector


Surface Detector (SD)

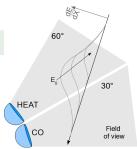
- 1660 detector stations
- Area 3000 km²
- 1.5 km spacing
- water Cherenkov detectors


Fluorescence Detector (FD)

- 4 FD buildings (called eyes)
- each eye: 6 Schmidt-telescopes
- Field of view $30^\circ \times 30^\circ$
- Sensitive in $\lambda = 300..420$ nm
- High Elevation Auger Telescopes


HEAT - High Elevation Auger Telescopes

- 3 telescopes extending field of view of FD
- \bullet Looking at elevations between 30° and 60°
- $ightarrow X_{
 m max} :=$ maximum of secondary particle energy deposit



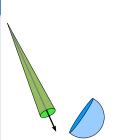
HEAT - High Elevation Auger Telescopes

Extension for lower energy showers:

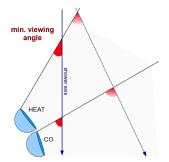
- Less energy deposited in the atmosphere
- $\rightarrow~\mbox{Only}$ near showers detectable
 - $X_{
 m max}$ at higher elevations ightarrow field of view

Light production mechanisms

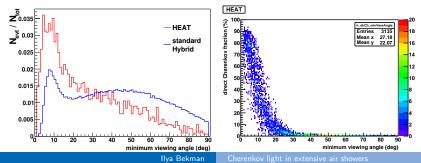
Fluorescence and Cherenkov light in extensive air showers


Fluorescence light in atmosphere

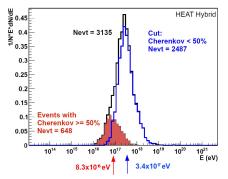
- Excitation of nitrogen molecules by shower particles
- Emission of light with discrete spectrum in UV
- Photons are emitted uniformly
- $\rightarrow\,$ Visible at every viewing angle of the detector


Cherenkov light in atmosphere

- Charged particles traveling faster than medium speed of light polarize medium atoms
- Cherenkov light is then emitted under angle $\cos(\theta_{Ch}) = \frac{1}{\beta n}$
- $\bullet\,$ Continuous spectrum, mainly in UV
- Cherenkov light is beamed along particle track
- $\rightarrow\,$ Superposed light cone in the direction of the shower



Effect of geometry on detected shower light

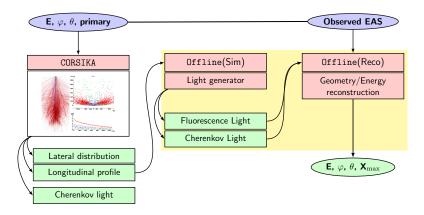


- More acute minimum viewing angle for HEAT showers
- HEAT is looking into the Cherenkov cone
- Fraction of direct Cherenkov light twice as high in HEAT events than in standard FD

$\mathsf{Cherenkov} \Leftrightarrow \mathsf{Energy}$

- Cherenkov light allows triggering of low energy showers, otherwise not seen by standard FD
- BUT Reconstruction chain not developed for high Cherenkov fraction - such showers are rejected by present data cuts for high level analysis

- It is important to consider Cherenkov-rich showers to extend Auger spectrum towards lower energy
- Understand influence of Cherenkov light for shower reconstruction

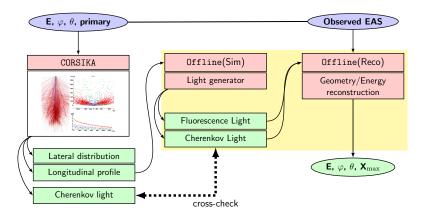

Simulation and reconstruction of extensive air showers

CORSIKA

Standard tool for full air shower simulation

<u>Off</u><u>line</u>

Modular tool for air shower reconstruction developed by Pierre Auger Collaboration

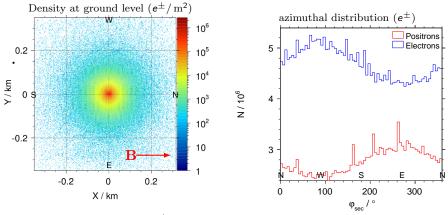

Simulation and reconstruction of extensive air showers

CORSIKA

Standard tool for full air shower simulation

<u>Off</u><u>line</u>

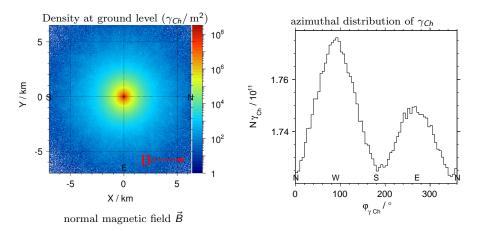
Modular tool for air shower reconstruction developed by Pierre Auger Collaboration



Effect of the geomagnetic field on particle showers

- Cherenkov light is mainly caused by electrons and positrons
- Interested in effects on electromagnetic shower component

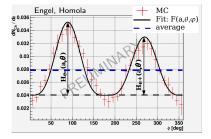
 $\rightarrow~$ Study geomagnetic field

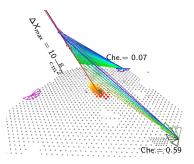

Electrons and positrons at ground level

Earth magnetic field \vec{B}

- Electrons and positrons are deflected by the geomagnetic field
- Asymmetry in azimuthal distribution of secondary particles

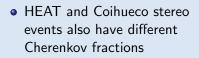
Cherenkov photons at ground level

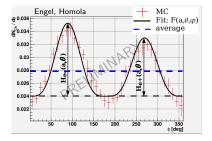


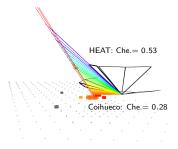

- Cherenkov photons follow the distribution of charged particles
- Asymmetry in azimuthal distribution of Cherenkov light due to geomagnetic field

Parametrization of azimuthal asymmetry

- Consider influence of the geomagnetic field on azimuthal distribution of Cherenkov light in Auger data
- $\rightarrow\,$ Provides better reconstruction


- Test with stereo events as seen by 2 telescopes
- Correction of expected Cherenkov light for azimuthal asymmetry provides better reconstruction in *E* and *X*_{max}




Parametrization of azimuthal asymmetry

- Consider influence of the geomagnetic field on azimuthal distribution of Cherenkov light in Auger data
- $\rightarrow\,$ Provides better reconstruction

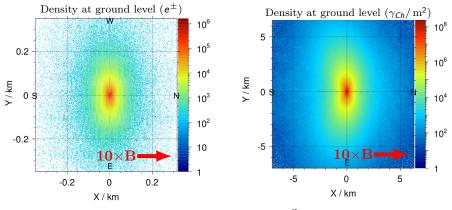
 $\rightarrow\,$ Estimate and apply correction for HEAT reconstruction

Conclusion & Outlook

Conclusion

- HEAT low energy enhancement
- Higher Cherenkov light fraction in HEAT data
- \bullet Cherenkov light becomes important for reconstruction of air showers in $\overline{Off}\underline{line}$
- CORSIKA simulation study of secondary particles and Cherenkov light
- Asymmetry in azimuthal distribution caused by geomagnetic field

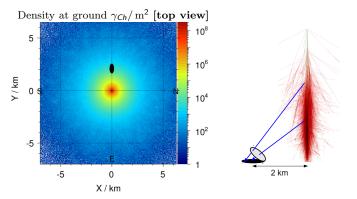
Outlook


- Apply azimuthal asymmetry parametrization to HEAT and Coihueco stereo events
- Verify/optimize Offline Cherenkov simulation and reconstruction routines
- $\rightarrow\,$ Use Cherenkov-rich HEAT showers for high level analysis

Thank You!

Backup

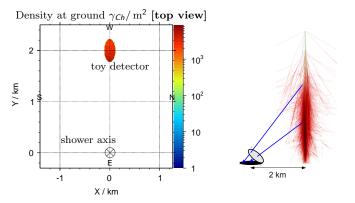
Cherenkov photons at ground level



tenfold magnetic field $10 imes \vec{B}$

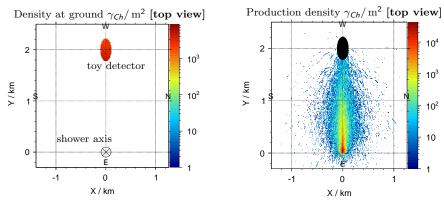
- Cherenkov photons follow the distribution of charged particles
- Asymmetry due to geomagnetic field inducted into Cherenkov light distribution

Simulation of Cherenkov photons arriving at the ground


• CORSIKA proton shower, $E = 10^{18} \text{ eV}, \varphi = 0^{\circ}, \theta = 0^{\circ}, \lambda = 300..420 \text{ nm}$

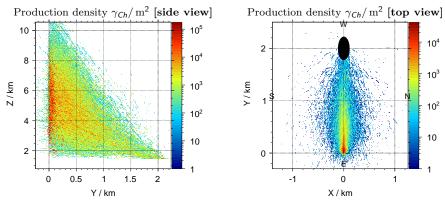
• Define toy detector at ground level, 110m radius, 2km distance

Cherenkov photons at toy detector


• CORSIKA proton shower, $E = 10^{18} \, \mathrm{eV}, \varphi = 0^{\circ}, \theta = 0^{\circ}, \lambda = 300..420 \, \mathrm{nm}$

- Define toy detector at ground level, 110m radius, 2km distance
- Backtrack photons to their emission point

Cherenkov photons production


• CORSIKA proton shower, $E = 10^{18} \text{ eV}, \varphi = 0^{\circ}, \theta = 0^{\circ}, \lambda = 300..420 \text{ nm}$

- Production density for photons hitting the aperture
- Photons produced off the shower axis

Cherenkov photons production

• CORSIKA proton shower, $E = 10^{18} \text{ eV}, \varphi = 0^{\circ}, \theta = 0^{\circ}, \lambda = 300..420 \text{ nm}$

- Production density for photons hitting the aperture
- Photons produced off the shower axis

 \rightarrow Estimate effect on geometry reconstruction