

Introduction:

- The H.E.S.S. Cherenkov telescope array
- 1ES 0229+200
- Summary and conclusions

The H.E.S.S. Cherenkov telescope array

(but just because pictures are cool and fill space...)

Gabriele Cologna

Bärnfels, Astroteilchen Schule

The H.E.S.S. Cherenkov telescope array

Gabriele Cologna

Bärnfels, Astroteilchen Schule

Gabriele Cologna

Bärnfels, Astroteilchen Schule

```
H.E.S.S. I:
En. thres. \approx 100 \text{ GeV} @ zenith
Flux sens. \approx 1\% Crab Nebula (2.3*10^{-11}\text{cm}^{-2}\text{s}^{-1} > 1\text{TeV})
(5\sigma \text{ detection in 50h})
13m \phi / 107 \text{ m}^2 \text{ refl. area}
FOV = 5°
Ang. Res. \approx 0.1^\circ
```

H.E.S.S. II: En. thres. $\approx 20 \text{ GeV}$ @ zenith Flux sens. $\approx 2^{*}\text{HESS I}$ (together with HESS I) $28 \text{ m} \text{ } / 600 \text{ m}^2 \text{ refl.}$ area (biggest optical telescope ever built) FOV = 3.5° Ang. Res. $\approx 0.24^{\circ} - 0.28^{\circ}$ (in mono mode)

Ready for science in July 2012 (hopefully!!!)

Gabriele Cologna

Bärnfels, Astroteilchen Schule

1ES 0229+200

Gabriele Cologna

Bärnfels, Astroteilchen Schule

Why is 1ES 0229+200 interesting?

- it is "extreme" and unique in several of its characteristics
- the source modeling is challenging and not yet completely understood
- gives the opportunity to give constraints on
 - Intergalactic Magnetic Field (IGMF)
 - Extragalactic Background Light (EBL)

All of these are "coupled" to and affecting each other

Let's see more in detail

Gabriele Cologna

Bärnfels, Astroteilchen Schule

Physical properties:

- HBL, High Frequency Peaked BL Lac Object (from X-ray / radio flux ratio)
 → VHE (E>100GeV) emission expected
- high redshift z=0.1396 \rightarrow EBL absorption
- (very) hard spectrum Γ =2.50±0.19
- detected up to $\approx 10 \ TeV$
- constant flux (no significant variability)

Donato et al., 2001

Bärnfels, Astroteilchen Schule

Source modeling

- HBL

- Hard Spectrum (Γ =2.5)
- EBL absorbtion
 - → intrinsic spectrum $\Gamma \approx 1.0 1.5$ (depending on EBL model)

Inverse Compton (IC) peak beyond 10 TeV \rightarrow difficult to explain

possible explanations (among others):

- unusual high doppler factor (very unlikely)
- External IC on CMB (in addiction to the usual SSC)

Aharonian et al., 2007

Bärnfels, Astroteilchen Schule

What if the flux is not constant? \rightarrow variability is due to changes on small scales \rightarrow no external IC \rightarrow no valid explanation

New analysis and new data

And if also the spectrum is not so hard? \rightarrow IC peak at lower energies

 \rightarrow not so extreme BL Lac Object?

Gabriele Cologna

Bärnfels, Astroteilchen Schule

EBL absorption:

- energy dependent opacity $\tau(z,E)$
- Pair production through γ - γ interaction: $\gamma_{VHE}\gamma_{EBL} \rightarrow e^+e^-$
- $\gamma > 100$ TeV completely absorbed by the CMB

- intrinsic spectrum is modified $F_{obs}(E) = F_{int}(E)^* e^{-\tau(z,E)}$
- cross section peak at $\lambda \approx 1.4 \ (E_{\gamma}/1 \text{ TeV}) \ \mu\text{m} \rightarrow \text{near to mid IR}$

Bärnfels, Astroteilchen Schule

Lower limits on Intergalactic Magnetic Field (IGMF)

- e⁺e⁻ produced during EBL absorption will emit in the GeV range (IC on CMB)
- If a IGMF is present (B > 10⁻²⁰ G), e⁺e⁻ trajectories will be affected
- Flux will be diluted (particles are spread over larger angles)
- Dilution will depend on IGMF and on photon energy

Tavecchio et al., 2010

13 October, 10th 2011

Gabriele Cologna

Bärnfels, Astroteilchen Schule

The expected quantity of reprocessed radiation can be measured

Time delay between TeV and reprocessed GeV > 10^6 years (for B $\approx 10^{-15}$ G)

 \rightarrow constant flux needed! (in reality it is ok also if GeV integration time >

TeV variation)

Value of IGMF depends also ontime in which the flux is constant (lower values for smaller times)jet opening angle

Dermer: $B > 10^{-18} G$ Tavecchio: $B > 2*10^{-15} G$ Neronov: $B > 3*10^{-16} G$

Gabriele Cologna

Bärnfels, Astroteilchen Schule

Summary and Conclusions

Gabriele Cologna

Bärnfels, Astroteilchen Schule

Summary

- the H.E.S.S. telescope array (phase I and II) has been briefly presented
- the BL Lac Object 1ES 0229+200 has been described

Conclusions

- the modeling of 1ES 0229+200 is challenging (no simple standard explanation)
- estimation on the EBL spectra and energy density can be done
- lower limits on the IGMF can be derived

Thank you for your attention

Gabriele Cologna

Bärnfels, Astroteilchen Schule

- F. Aharonian et al., "New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200", A&A 475, L9-L13, 2007
- D. Donato et al., "Hard X-ray properties of Blazars", A&A 375, 739-751, 2001
- A. Franceschini et al., "Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity", A&A 487, 837-852, 2008
- F. Tavecchio et al., "The intergalactic magnetic field constrained by FERMI/LAT observations of the TeV blazar 1ES 0229+200", MNRAS 406, L70, 2010
- A. Neronov, I. Vovk, "Evidence for strong Extragalactic magnetic Fields from FERMI observations of TeV Blazars", Science 328, 73, 2010
- C. Dermer et al., "Time delay of cascade radiation for TeV Blazars and the measurement of the Intergalactic Magnetic Field", ApJL 733, L21, 2011

Backup slides

Gabriele Cologna

Bärnfels, Astroteilchen Schule

1ES 0229+200 – EBL absorption

EBL SED 2-10 μ m $\alpha \ge 1.1\pm0.25$

Gabriele Cologna

Bärnfels, Astroteilchen Schule