

Search for Very-High-Energy Gamma-Ray Emission from GRB100621A with H.E.S.S.

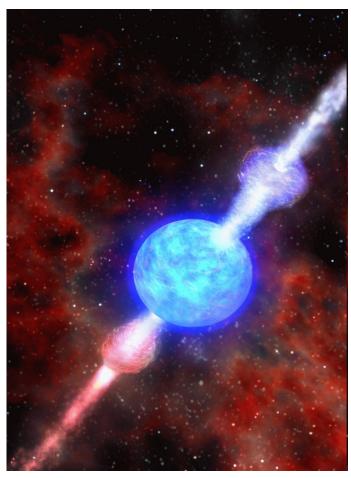
Dirk Lennarz

P. Chadwick, W. Domainko, G. Rowell, P.H.T. Tam, Y. Gallant, D. Horns, G. Pühlhofer, C. Stegmann, S. Wagner for the H.E.S.S. collaboration

Schule für Astroteilchenphysik

08 October 2011

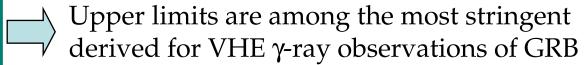
Overview


- What are GRBs?
- What is the H.E.S.S. experiment?
- What was special about GRB100621A?
- What are the results?

Gamma-ray bursts (GRBs)

- Extremely bright flashes of radiation, typically observed in the keV range
- First detection: 1967 on *Vela* military satellite
- Large sample of GRBs from Burst and Transient Source Experiment (BATSE)
- Two different classes (short vs. long, cut at 2s)
- Completely isotropic (extragalactic?!)
 - BeppoSax satellite in 1997
- Allowed redshift measurement
- Indication of SN/GRB connection

Artist impression of a GRB. Credit: NASA/Dana Berry, SkyWorks Digital



H.E.S.S. Telescope System

- High Energy Stereoscopic System in Namibia
- 4 Imaging Atmospheric Cherenkov Telescopes
- Detect γ-rays from air showers between ~100
 GeV and ~100 TeV
- Sensitivity (5σ) : 5% Crab in 1h

H.E.S.S. GRB programme

- Already started in 2003
- Followed up >40 GRBs
- No indication of emission

Is H.E.S.S. sensitive enough?

Fermi γ-ray Space Telescope

γ-ray Burst Monitor (GBM)

- Large field of view ("all sky")
- Energy range ~10 keV 1 MeV

Large Area Telescope (LAT)

- 20% of sky
- Energy range ~30 MeV-300 GeV

Artist impression of Fermi. Credit: Fermi collaboration

 $v f_v [\text{keV}^2 (\text{Photons cm}^2 \text{ s}^{-1} \text{ keV}^{-1})]$

 10^{3}

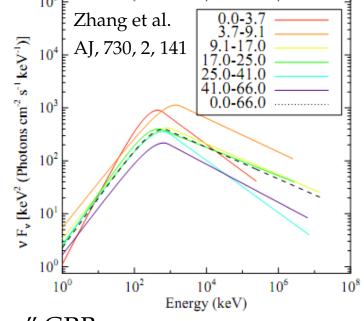
 10^{2}

Fermi input for H.E.S.S.

More than 75% of LAT GRBs

- Extrapolation of Band function into GeV
- No high energy cut-off

Zhang et al.


AJ, 730, 2, 141

 10^{2}

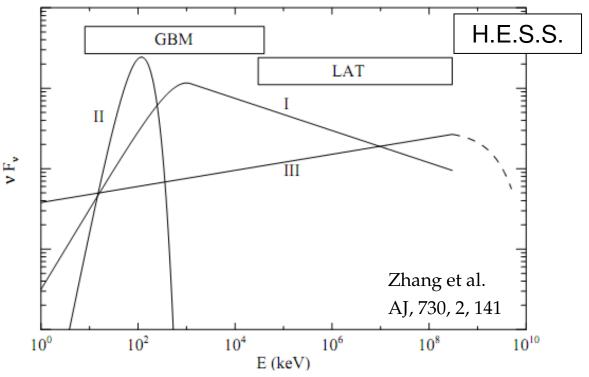
 10^{4}

Energy (keV

 10^{6}

- High energy component
- No high energy cut-off!

For both cases: extrapolation into TeV yields detectable flux for H.E.S.S.!



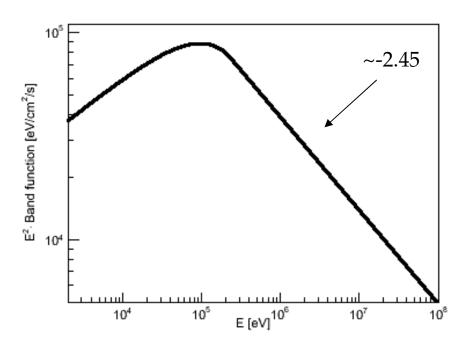
1085hule für Astroteilchenphysik

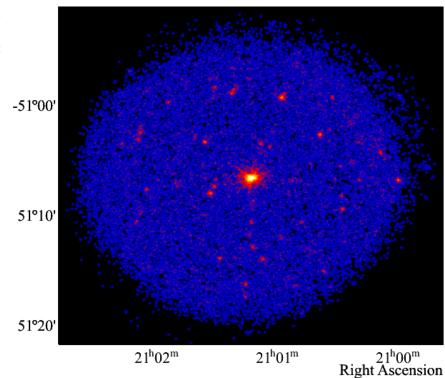
New Questions

Band-type GRBs

- Band function in TeV range?
- Or high energy cut-off?

"Extra power law" GRBs

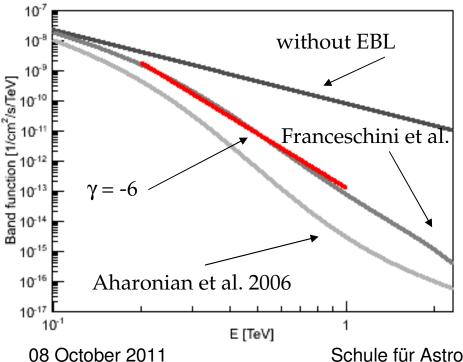

Where is the cut-off?

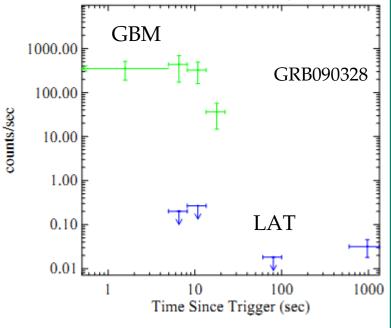


GRB 100621A

- Brightest X-ray source Swift ever detected
- No radio or optical afterglow reported, but NIR
- Redshift: 0.542 (close!)
- No Fermi observations reported
- Band function from Konus-Wind

Smoothed count map from Swift


GRB 100621A in H.E.S.S.


Zhang et al.

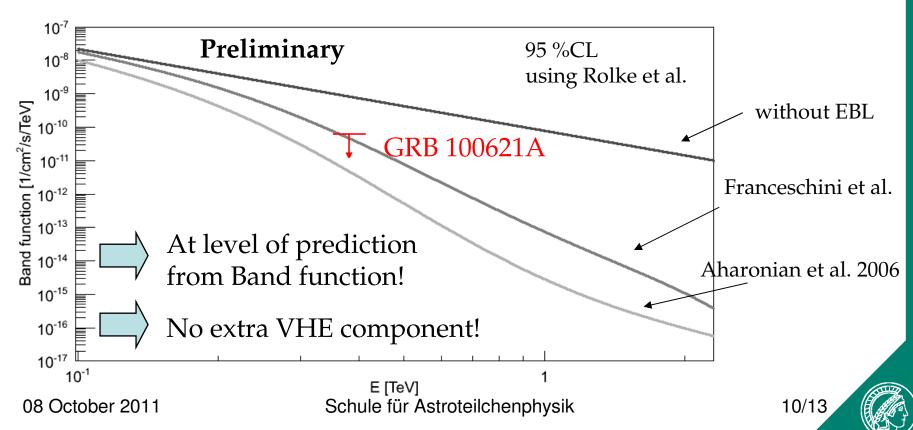
AJ, 730, 2, 141

- Swift trigger: 03:03:32 UT
- Start of data taking: 03:14:55 UT
- Two runs (each 28 mins) ~700s after trigger

Time scale on which LAT emission was observed

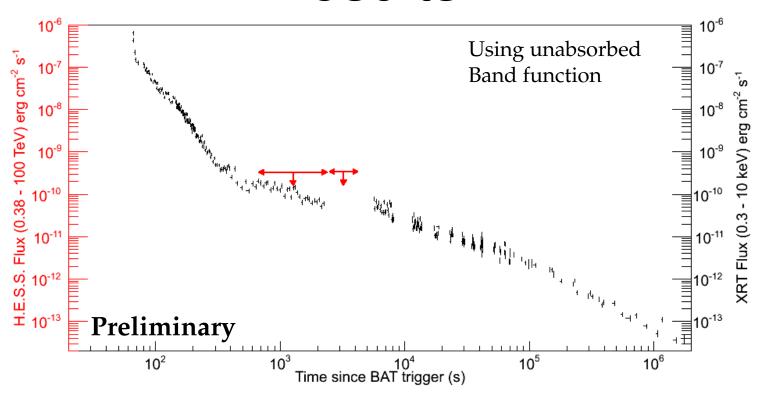
Flux prediction

- Extrapolate Band function to TeV
- Attenuate spectrum with EBL models



Results I

- Reflected background estimation method
- Loose cuts with reduced energy threshold


No indication of emission ($<1\sigma$)

Results II

VHE upper limit has to be taken into account when modelling the X-ray afterglow from synchrotron emission

Summary

- GRB 100621A was the brightest X-ray source Swift ever detected
- Small redshift, favourable position and short follow-up time made this GRB a prime target for H.E.S.S.
- No significant signal was seen
- GRB 100621A unlikely to have an "extra power law" in H.E.S.S. range
- H.E.S.S. can test the Band function extrapolation in the TeV range and provide important input to the afterglow modelling

Outlook

H.E.S.S. II

- Lower energy threshold (~50 GeV)
- Faster slewing (>50 % faster)

Will improve chances of GRB detections!

