

ANALYSIS OF COSMIC RAYS BELOW THE ANKLE WITH THE HIGH ELEVATION AUGER TELESCOPES (HEAT)

Obertrubach Astroteilchenschule

Alessio Porcelli

October 7th 2011

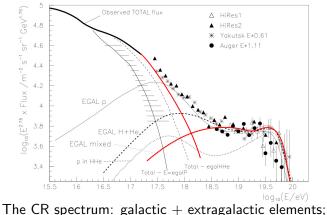
CR below the Ankle with HEAT

Alessio Porcelli

Elongation X_{max}

Need for HEAT

Measured FOVs


Reconstructed FOV

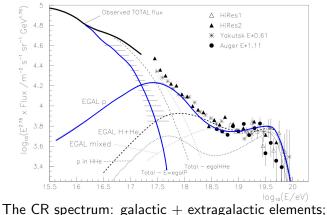
Conclusions

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Spectrum

[A.M. Hillas, astro-ph/0607109]

▶ Hillas et al.: Ankle given by G.-ExtraG. transitions:


• G.-ExtraG. transition estimation: $log_{10}(E/eV) \approx 18.5$;

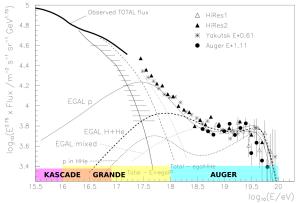
CR below the Ankle with HEAT Alessio Porcelli Elongation Xmax Need for HEAT Measured FOVs Reconstructed FOV

Conclusions

Spectrum

[A.M. Hillas, astro-ph/0607109]

- Berezinsky et al.: A. given by E loss $p + \gamma \rightarrow p + e^+e^-$:
 - G.-ExtraG. transition estimation: $log_{10}(E/eV) \approx 17.5$;

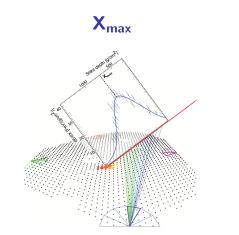

CR below the Ankle with HEAT Alessio Porcelli Elongation X_{max} Need for HEAT Measured FOVs

Reconstructed FOV

Conclusions

Spectrum

[A.M. Hillas, astro-ph/0607109]


The CR spectrum: galactic + extragalactic elements;

- Transition region is below the Ankle:
 - $log_{10}(E/eV) \approx 17.5 \div 18.5;$
 - Region where data are rather sparse.

CR below the Ankle with HEAT Alessio Porcelli Elongation X_{max} Need for HEAT Measured FOVs Reconstructed FOV

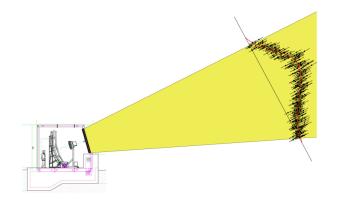
Conclusions

2

CR below the Ankle with HEAT Alessio Porcelli Elongation X_{max}

Need for HEAT

Measured FOVs

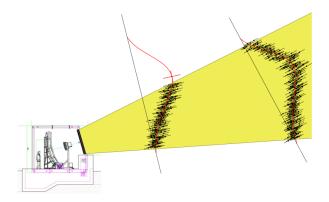

Reconstructed FOV

Conclusions

The *Elongation* (X_{max}) of a CR shower is where there is the the maximum longitudinal profile development (energy loss)

- Well know profile (Gaisser-Hillas);
- $\propto \ln A$ (A is the atomic number);
- ⇒ Experimental observable for understanding the CR composition.

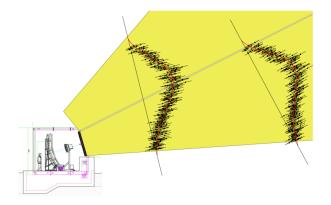
Need for **HEAT**



With HEAT we have a larger FOV:

- Low energy showers more detectable
- Better explore the transition region between galactic-extragalactic CR

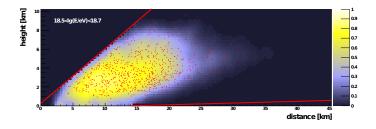
Need for **HEAT**



With HEAT we have a larger FOV:

- Low energy showers more detectable
- Better explore the transition region between galactic-extragalactic CR

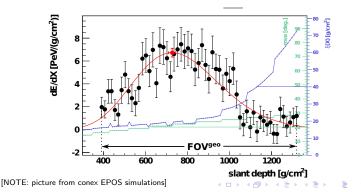
Need for HEAT



With HEAT we have a larger FOV:

- Low energy showers more detectable
- Better explore the transition region between galactic-extragalactic CR

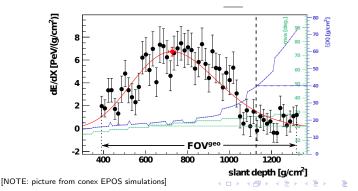
Geometrical and Expected FOV


- Geometrical FOV (inside red lines) delimitated by:
 - telescope viewing $(1.5^{\circ} \leq FOV \leq 30^{\circ})$.
- Expected FOV(colored area) delimitated by:
 - trigger efficiency;
 - detector efficiency (viewing angle of each PMT).

FOVs in details

- Geometrical (dotted vertical lines)
- Expected (dashed vertical lines): must fulfill the conditions
 - ▶ Reconstructed X_{max} uncertainty ξ(X) < 40 g/cm² (40 g/cm²: is statistical uncertainty upper limit)
 - minimum viewing angle mva > 20°

(< 20°: too much Cherenkov light)</p>

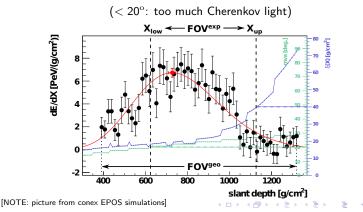


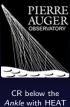
CR below the Ankle with HEAT Alessio Porcelli Measured FOVs

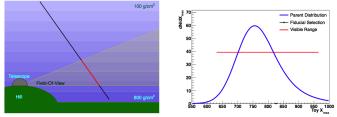
FOVs in details

- Geometrical (dotted vertical lines)
- Expected (dashed vertical lines): must fulfill the conditions
 - Reconstructed X_{max} uncertainty ξ(X) < 40 g/cm² (40 g/cm²: is statistical uncertainty upper limit)
 - minimum viewing angle mva > 20°

< 20°: too much Cherenkov light)

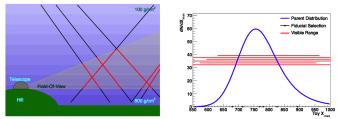





CR below the Ankle with HEAT Alessio Porcelli Measured FOVs

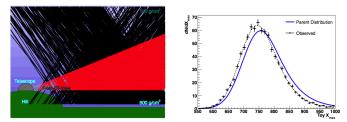
FOVs in details

- Geometrical (dotted vertical lines)
- Expected (dashed vertical lines): must fulfill the conditions
 - Reconstructed X_{max} uncertainty ξ(X) < 40 g/cm² (40 g/cm²: is statistical uncertainty upper limit)
 - minimum viewing angle mva $> 20^{\circ}$



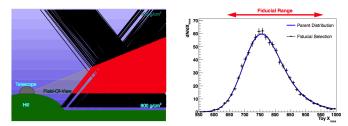
A shower has a visible range in the FOV (red line);

- Each shower has its own visible range (red lines);
- Putting together all the shower sampled, X_{max} distribution is not correct (X_{max} distribution undersampling).



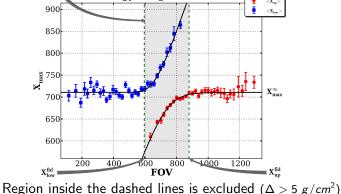
A shower has a visible range in the FOV (red line);

- Each shower has its own visible range (red lines);
- Putting together all the shower sampled, X_{max} distribution is not correct (X_{max} distribution undersampling).



A shower has a visible range in the FOV (red line)
Each shower has its own visible range (red lines);

 Putting together all the shower sampled, X_{max} distribution is not correct (X_{max} distribution undersampling).


A shower has a visible range in the FOV (red line)
Each shower has its own visible range (red lines);

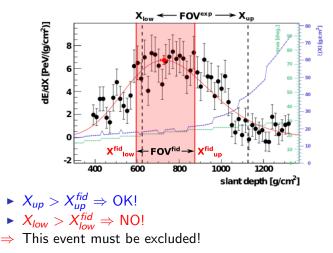
▶ Need to give a fiducial cut to assure a correct X_{max} distribution sampling: exclude those events with an expected FOV boundaries "inside" the fiducial FOV boundaries ($X_{low} > X_{low}^{fid}$ or $X_{up} < X_{up}^{fid}$).

Estimation of the fiducial cut values

 $\xi(X)$ and *mva* give X_{low} and X_{up} for given energy (here: 18.0 < log E < 18.1) and Δ (systematic uncertainty upper limit; here: $\Delta = 5$ g/cm²) exclusion region Energy Range: 18.0-18.1

The black curve is the mean fit

[NOTE: picture from data]

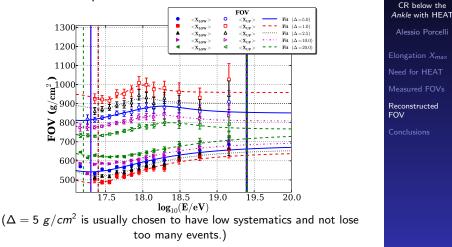

CR below the Ankle with HEAT

Alessio Porcelli

Reconstructed FOV

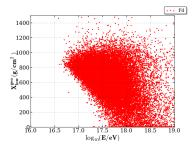
An instructional example

Just looking at the event before with the $X_{low}^{fid}/X_{up}^{fid}$ just estimated...



Fiducial FOV selection

To find the boundaries for the FOV cut: 1. Plot $X_{low}^{fid}/X_{up}^{fid}$ for every energy


2. Do fit and parametrization

Conclusions

With only Fluorescence Detector (FD):

- \odot Reached $\log_{10}(E/eV) \approx 17.5;$
- ③ Many events lost.

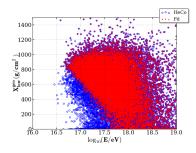
- * $\log_{10}(E/eV) < 17.5;$
- Increase events in the region where data are rather

sparse

[NOTE: picture from data]

CR below the Ankle with HEAT Alessio Porcelli Elongation X_{max} Need for HEAT Measured FOVs

Reconstructed FOV


Conclusions

11

Conclusions

With only Fluorescence Detector (FD):

- \odot Reached $\log_{10}(E/eV) \approx 17.5;$
- ③ Many events lost.

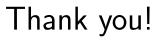
► HEAT+FD (HeCo) expectation:

- * $\log_{10}(E/eV) < 17.5;$
- * Increase events in the region where data are rather

sparse.

[NOTE: picture from data]

Ankle with HEAT Alessio Porcelli Elongation X_{max}


CR below the

Need for HEAT

Measured FOVs

Reconstructed FOV

Conclusions

CR below the Ankle with HEAT Alessio Porcelli

Elongation X_{max}

Need for HEAT

Measured FOVs

Reconstructed FOV

Conclusions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ