KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Experimental High-Energy Astroparticle Physics

Andreas Haungs haungs@kit.edu

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. Ultra-High Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
 - Pierre Auger Observatory, JEM-EUSO
- 3. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

 high-energy neutrinos IceCube and KM3Net

Content:

- **1. Introduction in HEAP**
 - source-acceleration-transport
 - short history of cosmic ray research
 - extensive air showers
- 2. Ultra-High Energy Cosmic Rays
 - KASCADE, KASCADE-Grande and LOPES
 - Pierre Auger Observatory, JEM-EUSO
- 3. TeV-Gamma-rays & High-energy Neutrinos
 - TeV gamma rays

H.E.S.S., MAGIC, CTA

 high-energy neutrinos IceCube and KM3Net

Cosmic Rays around the knee(s)

High-Energy Cosmic Ray Investigations with KASCADE, KASCADE-Grande, and LOPES

Galactic cosmic rays

Propagation through galaxy (B≈3μG?)

Acceleration of cosmic rays in supernova remnants

Direct or indirect measurement

Arrays of particle detectors

6

Karlsruhe Institute of Technolo

Andreas Haungs

Proposal

Abb.1: Differentielles Energiespektrum der Höhenstrahlung oberhalb 10¹¹ eV. Die Werte des Flusses sind mit E²,5 multipliziert, um den starken Abfall in der Darstellung zu reduzieren. Man erkennt deutlich das Abknicken der Kurve zwischen 10¹⁵ und 10¹⁶ eV ("Knie") und die große Streuung der Meßwerte in diesem Bereich. (Nach Linsley, 1983).

Konzeptstudie für ein Detektorsystem zur Untersuchung ausgedehnter Luftschauer für Primärenergien zwischen 10¹⁴ und 10¹⁷ eV J. Engler, H. J. Gils, D. Heck, W. Heeringa, H. Keim, H. O. Klages, J. Knapp, H. Rebel, G. Schatz, T. Thouw, B. Zeitnitz Kernforschungszentrum Karlsruhe, Institut für Kernphysik Juni 1988

Karlsruhe Institute of T

9

CORSIKA (COsmic Ray SImulations for KAscade)

10

Karlsruhe Institute of Technolog

> I day per

ASCADE: investigating the knee of cosmic rays by multi-parameter measurements

E = <u>KA</u>rlsruhe <u>Shower</u> <u>C</u>ore and <u>A</u>rray <u>DE</u>tector

- energy range 100 TeV 80 PeV
- up to 2003: 4.10⁷ EAS triggers
- large number of observables:
 - → electrons
 - → muons (@ 4 threshold energies)
 - → hadrons
- → primary energy, mass, direction

KAS

Run 3226, File 2, leve 65041, Ymd 10215, Hms 225810, Neds 250, Npds 138 (Xc,Yc) = (-45.4,-51.0), (Ze,Phi) = (36.7,228.6), log10(Ne)=6.14, log10(Lmuo)=4.66

Andreas Haungs

hadrons in air shower cores **Unaccompanied hadron**

Andreas Haungs

Karlsruhe Institute of Technology

SAT

Validity of Hadronic Interaction Models

Validity of Hadronic Interaction Models

KASCADE : sensitivity to hadronic interaction models

correlation of observables:

no hadronic interaction model describes data consistently !

- tests and tuning of hadronic interaction models !
- → close co-operation with theoreticians (CORSIKA including interaction models)
- → e.g.:

•EPOS 1.6 is not compatible with KASCADE measurements •QGSJET 01and SIBYLL 2.1still most compatible models

17

KASCADE collaboration, J Phys G (3 papers: 25(1999)2161; 34(2007)2581; (2009)035201)

CMS @ LHC

Charged particle distribution in pseudorapidity

(data from all LHC experiments, CMS shown as example)

Models for air showers typically better in agreement with LHC data

KASCADE : energy spectra of single mass groups

Searched: E and A of the Cosmic Ray Particles Given: N_e and N_μ for each single event → solve the inverse problem

 $\frac{dJ}{d\lg N_e \, d\lg N_{\mu}^{tr}} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left[p_A(\lg N_e, \lg N_{\mu}^{tr} \mid \lg E) \, d\lg E \right]$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

19

KASCADE collaboration, Astroparticle Physics 24 (2005

Results of KASCADE: Energy spectrum & composition

- knee is caused by light elements
- knee positions vary with mass group
- no hadronic interaction model describe data consistently

Analysis of 2-dimensional shower size spectrum:

→energy spectra of single mass groups

Result KASCADE -> Motivation KASCADE-Grande

Andreas Haungs

Result KASCADE -> Motivation KASCADE-Grande

KASCADE-Grande

- Energy range: 100TeV 1EeV
- Area: 0.5 km²
- Grande: 37×10 m² plastic scintillation detectors
- Nch + total muon number

W.D.Apel et al, Nucl.Instr. and Meth. A620 (2010) 202

2-dimensional shower size spectrum

determination of primary energy
separation in "electron-rich" and "electron-poor" event

$$log_{10}(E) = [a_p + (a_{Fe} - a_p) \cdot k] \cdot log_{10}(N_{ch}) + b_p + (b_{Fe} - b_p) \cdot k$$

 $k = (\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}) / (\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p})$

KASCADE-Grande all-particle energy spectrum

Astroparticle Physics 36 (2012) 183

- spectrum not a single power law
- hardening of the spectrum above 10¹⁶eV

25

steepening close to
 10¹⁷eV (2.1σ)

KASCADE-Grande energy spectra of mass groups

- steepening due to heavy primaries (3.5σ)
- hardening at 10^{17.08} eV
 (5.8σ) in light spectrum
- slope change from $\gamma = -3.25$ to $\gamma = -2.79!$

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101

Light and Heavy Knees, Ankles, and Transition

- → KASCADE: knee of light primaries at ~3.10¹⁵eV
- → Hardening at 10¹⁶eV due to knee of medium component
- → KASCADE-Grande: knee of heavy primaries at ~9.10¹⁶ eV
- ➔ heavy knee less distinct compared to light knee
- → mixed composition for 10^{15} to ~ 8.10¹⁷ eV
- → light ankle at 1-2-10¹⁷ eV

knee position «1,

Light and Heavy Knees, Ankles, and Transition

Questions:

- which astrophysical scenario (model) describes the data?

- exact energy and mass scale?

- spectral forms?

rigidity

17

B-component

16

Tibet

A-component

15

31 (2005) R95

Karlsruhe Institute o

5.5

5.25

4.75 F

4.5

4.25

3.75

3.5

3.25

14

log₁₀(E^{2.75} x Flux / m ⁻²s⁻¹sr⁻¹GeV^{1.75})

LOPES

SAT

- LOPES collaboration: -) KASCADE-Grande -) U Nijmegen, NL
- -) MPIfR Bonn, D
- -) Astron, NL
- -) IPE, FZK, D

→ Development of a new detection technique!

Evolution of LOPES

SAT

Andreas Haungs

-100

0 W->E Direction

30

Karlsruhe Institute

LOPES: Proof of principle

2. Radio data analysis

5. Publication LOPES collaboration, Nature 425 (2005) 313

1. KASCADE measurement

3. Skymapping

4. Many events

31

LOPES 30 event example

-radio reconstruction inclusive calibration factors of antennas →CC-beam value (per event) → Field strength (per antenna)

$$cc[t] = + \sqrt{\left|\frac{1}{N_{Pairs}}\sum_{i=1}^{N-1}\sum_{j>i}^{N}s_{i}[t]s_{j}[t]\right|}$$

(degree of correlation \rightarrow extract coherent pulse):

Karlsruhe Institute

W->F Direction

Andreas Haungs

Radio from Air Showers

~3-4000 cosmic ray events unambiguously detected by

LOPES CODALEMA Radio Prototypes@Auger AERA TREND ANITA Tunka-Rex

(and of course the historical experiments, partly re-analyzed: MSU, Yakutsk, e.g.)

→Now: do we understand the signals?

EAS Radio detection

- as new CR detection technique established E_{threshold} ≈ 10¹⁷eV
- emission mechanism(s) are understood
- successful and sensitive to
 - primary energy $\varepsilon \sim E_0^{\gamma} (\gamma \approx 1) \Delta E/E \sim 20-25\%$
 - arrival direction beam forming resolution better 1°
 - composition LDF-slope; wave front △A/A (~ to fluorescence?!)

suitable for hybrid measurements ? **yes**!! As stand-alone technique? will see!!

Next: AERA@Pierre Auger Observatory / LOFAR / Tunka-Rex / ANITA-CR optimization / TREND / IceCube surface Radio Array = RASTA / Yakutsk

30 March 2009 – official closure ceremony

COSMIC REVELATION

AN ART & SCIENCE COOPERATION

KASCADE

MULTI-DETECTOR SETUP FOR MEASURING EXTENSIVE AIR SHOWERS

COSMIC MIRROR

LIGHTBASED ARTWORK FOR VISUALISATION OF COSMIC RAYS

Cosmic Revelation

an example of a highly recognized outreach project at KASCADE

NATURE|Vol 458|16 April 2009

Project is continued: now mainly at art events, exhibitions, etc

More information: Tim Otto Roth's webpage:

www.imachination.net

37

The facility KASCADE-Grande:LOPESCROMETAUWERHiSparcLightning

TAUWER: Tau Neutrino shower detection

Goal: Muon/Electron separation sensitivity

Partners: Univ Roma La Sapienza

HiSPARC: School project for cosmic ray air shower detection

Goal: Energy calibration of small EAS

Partners: NIKHEF Nijmegen/Amsterdam

lightning: Lightning mapping array

Goal: - correlation lightning-EAS - lightning data for LOPES

38

Partners: Paul Krehbiel, US

EAS Radio detection in GHz range: CROME

core distances between 80m and 150m
 ring structure hints towards Cherenkov cone

REAS3 simulations predict such a ring structure in the GHz-frequency range

Iron primary Total field strength Simulated with REAS3

F.Werner – CROME; ARENA conf 2012

39

KASCADE-Grande: Next

• KASCADE + KASCADE-Grande finally closed end 2012 now dismantled

• combined analysis for coherent spectrum and composition 10¹⁴-10¹⁸ eV

 detailed data analysis (20y high-quality data) testing hadronic interaction models anisotropy studies radio (LOPES and CROME)

KCDC
 KASCADE Cosmic ray Data Centre

Andreas Haungs

Karlsruhe Institute

https://kcdc.ikp.kit.edu/

 KCDC = publishing research data from the KASCADE experiment

• Motivation and Idea of Open Data: general public has to be able to access and use the data the data has to be preserved for future generations

• Web portal:

providing a modern software solution for publishing KASCADE data for a general audience In a second step: release the software as Open Source for free use by other experiments

Data access:

1.6-10⁸ EAS events of first data release is now available

KASCADE-Grande: Mission Accomplished !!

open access to research data https://kcdc.ikp.kit.edu

Summary

answers only by combining all information: stay tuned!

44

Karlsruhe Institute

• expectations on spectral features in transition region?

- •
- •
- •

ideal accelerator experiment for cosmic ray physics?

- •
- •
- •
- why radio could be better than fluorescence?
 - •

 - •

- expectations on spectral features in transition region?
 - should not be smooth
 - galactic ends with iron; extragalactic starts with proton
 - anisotropy
- ideal accelerator experiment for cosmic ray physics?
 - •
 - •
 - •
- why radio could be better than fluorescence?
 - •

 - •

- expectations on spectral features in transition region?
 - should not be smooth
 - galactic ends with iron; extragalactic starts with proton
 - anisotropy
- ideal accelerator experiment for cosmic ray physics?
 - p....Fe ←→ N beam
 - forward detector
 - cross-sections / multiplicities
- why radio could be better than fluorescence?

- expectations on spectral features in transition region?
 - should not be smooth
 - galactic ends with iron; extragalactic starts with proton
 - anisotropy
- ideal accelerator experiment for cosmic ray physics?
 - p....Fe ←→ N beam
 - forward detector
 - cross-sections / multiplicities
- why radio could be better than fluorescence?
 - 95% duty cycle
 - weather independent
 - cheaper (larger area)

