Direct Search for Dark Matter

Schule für Astroteilchenphysik, Bärnfels-Obertrubach, Oktober 2014 Christian Weinheimer Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster de

- Astrophysical evidence for Dark Matter

- Dark Matter candidates
- WIMP interaction rates and experimental requirements
- Cryobolometer experiments
- Liquid noble gas experiments
- Conclusions

There is **compelling evidence** on all astrophysical scales (rotation curve of galaxies, gravitational lensing, CMB, structure formation, ..) **for non-baryonic dark matter** 5 times more than baryonic matter !

Possible candidates are many: presently top candidates: WIMPs (weakly interaction massive particle) twice motivitated by WIMP miracle very light axions keV neutrinos

Experimental search for WIMPs I

a) At accelerators: $p + p \rightarrow + \tilde{a} + \tilde{\chi}$

Indirect detection by missing mass+momentum Not really a proof of WIMPs being the Dark Matter of the universe

Search for neutrinos or gammas from large mass accumulations (center of galaxy, sun, ..)

Experimental search for WIMPs I

a) At accelerators:

 $p + p \rightarrow \rightarrow ... + \tilde{a} + \tilde{\chi}$

Indirect detection by missing mass+momentum Not really a proof of WIMPs being the Dark Matter of the universe

b) WIMP annihilation in the universe: $\tilde{\chi} + \tilde{\chi} \rightarrow \dots \rightarrow \dots + \nu + \bar{\nu}$ $\dots \rightarrow \dots + \gamma + \gamma$

Search for neutrinos or gammas from large mass accumulations (center of galaxy, sun, ..)

Dark Matter, Astroteilchenschule, 201

Experimental search for WIMPs I

a) At accelerators:

 $p + p \rightarrow \dots \rightarrow \dots + \tilde{a} + \tilde{\chi}$

No indication for new particles yet !

Indirect detection by missing mass+momentum Not really a proof of WIMPs being the Dark Matter of the universe articles yet !

b) WIMP annihilation in the universe: $\tilde{\chi} + \tilde{\chi} \rightarrow \dots \rightarrow \dots + \gamma + \tilde{\gamma}$ $\dots \rightarrow \dots + \gamma + \gamma$ Claimed lepton or positron excess can be also explained purely by astrophysics (e.g. pulsars) Search for neutrinos or gammas from large mass accumulations (center of galaxy, sun, ..)

Positron excess by PAMELA, latest results by AMS-II

Experimental search for WIMPs II: Direct detection

Effectively a scalar spin-independent (SI) or spin-dependent (SD) interaction

In principle even 6 couplings (+ 2 interference terms) to nuclear d.o.f. possible (arXiv:1308.6288)

Direct versus indirect searches WILHELMS-UNIVERSITÄT

Nothing found yet, but region of SUSY is being attacked !

WESTFÄLISCHE

Münster

Theoretical WIMP cross section connected to experimental rate limit

Dark Matter, Astroteilchenschule, 2014 9

Notations

$m_{ ilde{\chi}}$:	mass of the WIMP
$m_{ m N}$:	mass of the nucleon
$m_{ m A}$:	mass of the nucleus
$\mu_{\rm r} = \frac{m_{\tilde{\chi}} \cdot m_{\rm A}}{m_{\tilde{\chi}} + m_{\rm A}}$:	reduced mass
$E_{ m r}$:	recoil energy

Relativitistic kinematics:

$$\mathbf{q}^2 = q_\mu q^\mu$$
 and $Q^2 = -\mathbf{q}^2$

But here non-relativitistic case $(m_{\tilde{\chi}} \gg E_{\rm r} \text{ and } m_{\tilde{\chi}}^2 \gg |\mathbf{q}^2|)$:

$$q^2:=\vec{q}^{\ 2}$$

often used :
$$Q = E_1$$

Dark Matter, Astroteilchenschule, 2014 10

WIMP velocity distribution

Assume a local 3-dim. Maxwellian WIMP velocity distribution:

$$f(\vec{v}) \ d^3v = \frac{1}{\pi^{3/2} \ v_0^3} \cdot e^{-v^2/v_0^2} \ d^3v \quad \text{with} \quad v_0 = 220 \text{ km/s}$$

Remark : $\sigma_v = \frac{1}{\sqrt{2}} \cdot v_0 \quad \Rightarrow \quad \int \int \int f(\vec{v}) \ d^3v = 1$

Turn this into a 1-dim. velocity distribution by assuming radial symmetry:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(\vec{v}) \ d^3v = 4\pi \int_0^\infty \frac{v^2 \cdot e^{-v^2/v_0^2}}{\pi^{3/2} \ v_0^3} \ dv$$
$$= \int_0^\infty \underbrace{\frac{4v^2 \cdot e^{-v^2/v_0^2}}{\sqrt{\pi} \ v_0^3}}_{:=f_1(v)} \ dv$$

Velocity dispersion \bar{v}

$$\bar{v}^2 = \langle v^2 \rangle = \int_0^\infty v^2 f_1(v) \, dv = \frac{3}{2} \, v_0^2$$
$$\Rightarrow \quad \bar{v} = \sqrt{\frac{3}{2}} \, v_0 = 270 \, \frac{\mathrm{km}}{\mathrm{s}}$$

Astrophysics

Kinematic relations

Describe elastic scattering in the center of mass system CMS with relative velocity v.

The center of mass moving with a velocity v_s is defined such, that the two momenta in CMS are equal (assume nucleus at rest in lab system)

$$\begin{split} m_{\tilde{\chi}} \cdot (v - v_{\rm s}) &= p = m_{\rm A} \cdot v_{\rm s} \\ \Rightarrow v_{\rm s} &= v \cdot \frac{m_{\tilde{\chi}}}{m_{\tilde{\chi}} + m_{\rm A}} \\ \Rightarrow \quad p = m_{\rm A} \cdot v_{\rm s} = \mu_{\rm r} \cdot v \quad \text{momentum in CMS} \end{split}$$

Momentum transfer

$$\vec{q} = \vec{p}_i - \vec{p}_f$$
 with $|p_i| = |p_f| = p = \mu_r \cdot v$ (elastic scattering)

CMS scattering angle θ^*

$$\frac{q}{2} = p \cdot \sin \frac{\theta^*}{2}$$
$$\Rightarrow \quad q^2 = 4 \cdot p^2 \cdot \sin^2 \frac{\theta^*}{2} = 2 \cdot p^2 \cdot (1 - \cos \theta^*) = 2 \cdot \mu_r^2 \cdot v^2 \cdot (1 - \cos \theta^*)$$

Recoil energy

$$E_{\rm r} = \frac{q^2}{2 \cdot m_{\rm A}} = \frac{\mu_{\rm r}^2 \cdot v^2}{m_A} \cdot (1 - \cos \theta^*) \quad \Rightarrow \quad 0 \le E_{\rm r} \le \frac{2 \cdot \mu_{\rm r}^2 \cdot v^2}{m_A}$$
$$\frac{dq^2}{dE_{\rm r}} = 2 \cdot m_{\rm A}$$

Nuclear recoil energy E_r

Elastic scattering of a scalar (spin-independent) interaction:

in 0th order: assume s-wave scattering

 \Rightarrow angular distribution is uniformly distributed in the variable $\cos \theta^*$ within interval [-1, 1]

 \Rightarrow for a given WIMP velocity v the recoil energy $E_{\rm r}$ is uniformly distributed in interval $\left[0, \frac{2 \cdot \mu_{\rm r}^2 \cdot v^2}{m_A}\right]$

with $E_{\rm r, max} = \frac{2 \cdot \mu_{\rm r}^2 \cdot v^2}{m_A}$

Just to get a first estimate on the size of the recoil energy

Let us assume
$$m_{\tilde{\chi}} = 100 \text{ GeV} = m_{\text{A}} \quad (\Rightarrow \mu_{\text{r}} = 50 \text{ GeV})$$

and $\theta^* = 90^{\circ}$ and $v = v_0 \approx 0.7 \cdot 10^{-3}$
 $\Rightarrow E_{\text{r}} = \frac{(50 \text{ GeV})^2 \cdot (0.7 \cdot 10^{-3})^2}{100 \text{ GeV}} \cdot (1 - \cos 90^{\circ}) = 25 \text{ GeV} \cdot 0.5 \cdot 10^{-6} = 12.5 \text{ keV}$

Basic relation between cross section σ and interaction probability P and incoming flux density j

$$P = j \cdot \sigma$$
 with $\vec{j} = \underbrace{n}_{\text{incoming particle density incoming particle velocity}} \cdot \underbrace{\vec{v}}_{\text{incoming particle velocity}}$

With $N_{\rm T}$ target objects

$$\dot{N}_{\rm T} = j \cdot \sigma \cdot N_{\rm T} = n \cdot v \cdot \sigma \cdot N_{\rm T}$$

= $n \cdot v \cdot \sigma \cdot \frac{M_{\rm T}}{m_{\rm A}}$ with $M_{\rm T}$ being the total target mass, e.g. 34 kg of fid. vol.

Remark: This relation is only valid for non-opaque targets, i.e. dimensions \ll mean free path, which is usually fulfilled in weak interactions

The incoming WIMP density is given by the local (dark) matter density and the WIMP mass

$$n = n_{\tilde{\chi}} = \frac{\rho_0}{m_{\tilde{\chi}}}$$
$$\Rightarrow j \propto n \propto \frac{1}{m_{\tilde{\chi}}}$$

Recoil spectrum

Usually we are interested in the interaction reate per mass unit R

$$R = \frac{\dot{N}_{\rm T}}{M_{\rm T}} = n \cdot v \cdot \sigma \cdot \frac{M_{\rm T}}{m_{\rm A}} \cdot \frac{1}{M_{\rm T}} = \frac{n \cdot v \cdot \sigma}{m_{\rm A}} = \frac{\rho_0 \cdot v \cdot \sigma}{m_{\tilde{\chi}} \cdot m_{\rm A}}$$

The WIMP velocity v is not fixed but follows a velocity distribution.

We first neglect the velocity of the earth $\vec{v}_{\rm E}(t)$ and assume a radial symmetric velocity distribution $f_1(v)$ over which we have to integrate

$$R = \int dR = \int \frac{\rho_0 \cdot v \cdot \sigma \cdot f_1(v)}{m_{\tilde{\chi}} \cdot m_{\rm A}} \ dv$$

We assume that the scalar coherent elastic cross section does not depend on the velocity of the WIMP $(\sigma = \sigma_0)$ except for loss of coherence for higher energies, which we will consider later by introducing a form factor.

Then we consider a differential rate dR for a defined velocity in the range [v, v + dv]

$$\frac{dR}{dv} = \frac{\rho_0 \cdot v \cdot \sigma \cdot f_1(v)}{m_{\tilde{\chi}} \cdot m_{\rm A}}$$

We are interested in the differential rate also in terms of the recoil energy $E_{\rm r}$. Since for a giving velocity a scalar elastic interaction results in a uniform distribution of the recoil energy $E_{\rm r}$ in the interval $[0, E_{\rm r, max}]$ we just devide $\frac{dR}{dv}$ by $E_{\rm r, max} = \frac{2 \cdot \mu_{\rm r}^2 \cdot v^2}{m_A}$

$$\frac{d^2 R}{dv \ dE_{\rm r}} = \frac{\rho_0 \cdot v \cdot \sigma \cdot f_1(v)}{m_{\tilde{\chi}} \cdot m_{\rm A} \cdot E_{\rm r, \ max}} = \frac{\rho_0 \cdot \sigma \cdot f_1(v)}{2 \cdot m_{\tilde{\chi}} \cdot v \cdot \mu_{\rm r}^{\ 2}}$$

Integrating over the velocity distribution yields

$$\frac{dR}{dE_{\rm r}} = \frac{\rho_0 \cdot \sigma}{2 \cdot m_{\tilde{\chi}} \cdot {\mu_{\rm r}}^2} \cdot \int \frac{1}{v} \cdot f_1(v) \ dv = \frac{\rho_0 \cdot \sigma}{2 \cdot m_{\tilde{\chi}} \cdot {\mu_{\rm r}}^2} \cdot \langle \frac{1}{v} \rangle$$

for simplification assume here $v_E = 0$ derivation can be repeated with $v_E \neq 0$ in 0th order: assume s-wave scattering

Increasing q^2 : loss off coherence \rightarrow Form factors

We now consider the loss of coherence for larger q^2 by introducing the Formfactor $F(q^2)$

$$\sigma(q^2) = \sigma_0 \cdot F^2(q^2)$$

In low q^2 approximation the Formfactor is nothing than the Fouriertransform of the spatial distribution of the scattering objects,

e.g. the charge distribution for EM interaction (which corresponds inside a nucleon to the weak charge (isospin) distribution for weak interactions from eN versus vN deep inelastic scattering)

\rightarrow *F*(*q*²) has to be calculated by nuclear physics !

Form factors

pictures from Povh, Rith, Scholtz, Zetsche, Teilchen und Kerne, Springer

picture from Demtröder, Experimentalphysik, Band 2, Springer

Spin-independent and spin-dependent cross sections

WIMP-nucleus spin-independent (SI) and spin-dependent (SD) cross sections

$$\sigma_{0,\mathrm{SI}} = \frac{4}{\pi} \cdot \mu_{\mathrm{r}}^{2} \cdot (Z \cdot f_{\mathrm{p}} + (A - Z) \cdot f_{\mathrm{n}})^{2}$$

$$= \frac{4}{\pi} \cdot \mu_{\mathrm{r}}^{2} \cdot f^{2} \cdot A^{2} \quad \text{for} \quad f_{\mathrm{p}} = f_{\mathrm{n}}$$

$$= \sigma_{\mathrm{N,SI}} \cdot \frac{\mu_{\mathrm{r}}^{2}}{m_{\mathrm{N}}^{2}} \cdot A^{2}$$

$$\sigma_{\mathrm{N,SI}} = \frac{4}{\pi} \cdot \left(\frac{m_{\mathrm{N}} \cdot m_{\tilde{\chi}}}{m_{\mathrm{N}} + m_{\tilde{\chi}}}\right)^{2} \cdot f^{2} = \frac{4}{\pi} \cdot m_{\mathrm{N}}^{2} \cdot f^{2} \quad \text{for} \quad m_{\tilde{\chi}} \gg m_{\mathrm{N}}$$

$$\sigma_{0,\text{SD}} = \frac{32 \cdot \mu_{\text{r}}^2}{\pi} \cdot \frac{J+1}{J} \cdot (a_p \cdot \langle S_p \rangle + a_n \cdot \langle S_n \rangle)^2 \cdot \frac{S(q)}{S(0)}$$

with $S(q) = a_0^2 \cdot S_{00}(q) + a_1^2 \cdot S_{11}(q) + a_0 \cdot a_1 \cdot S_{01}(q)$

with $\langle S_p \rangle$ ($\langle S_n \rangle$) being the expectation values of the spin content of the protons (neutrons) in the nucleus and with the spin form factors S_{ij}

Expected recoil spectrum I

Evaluate $\langle 1/v \rangle$ The intergral does not range from 0 to ∞ because there is a lower velocity limit v_{\min} to create a recoil of E_r

$$v_{\rm min} = \sqrt{\frac{E_{\rm r} \cdot m_{\rm A}}{2\mu_{\rm r}^2}}$$

There is also a maximum velocity $v_{\text{max}} = v_{\text{esc}}$ with 498 km/s $< v_{\text{esc}} < 608$ km/s (PDG2012), which is less important

With still the simplification $v_{\rm E} = 0$

$$\begin{split} \langle \frac{1}{v} \rangle &= \int_{v_{\min}}^{v_{\max}} \frac{1}{v} \cdot f_1(v) \ dv = \int_{v_{\min}}^{v_{\max}} \frac{1}{v} \cdot \frac{4v^2 \cdot e^{-v^2/v_0^2}}{\sqrt{\pi} \ v_0^3} \ dv = \frac{4}{\sqrt{\pi} \ v_0^3} \cdot \int_{v_{\min}}^{v_{\max}} v \cdot e^{-v^2/v_0^2} \ dv \\ &= \frac{4}{\sqrt{\pi} \ v_0^3} \cdot \left[-\frac{v_0^2}{2} \cdot e^{-v^2/v_0^2} \right]_{v_{\min}}^{v_{\max}} \approx \frac{4}{\sqrt{\pi} \ v_0^3} \cdot \left[-\frac{v_0^2}{2} \cdot e^{-v^2/v_0^2} \right]_{v_{\min}}^{\infty} = \frac{2}{\sqrt{\pi} \ v_0} \cdot e^{-v_{\min}^2/v_0^2} \\ &= \frac{2}{\sqrt{\pi} \ v_0} \cdot e^{-\frac{E_{\mathrm{r}} \cdot m_{\mathrm{A}}}{2\cdot \mu_{\mathrm{r}}^2 \cdot v_0^2}} \end{split}$$

The recoil spectrum gets:

$$\frac{dR}{dE_{\rm r}} = \frac{\rho_0 \cdot \sigma_0 \cdot F^2(q^2)}{2 \cdot m_{\tilde{\chi}} \cdot \mu_{\rm r}^2} \cdot \langle \frac{1}{v} \rangle = \frac{\rho_0 \cdot \sigma_0 \cdot F^2(q^2)}{\sqrt{\pi} \cdot m_{\tilde{\chi}} \cdot \mu_{\rm r}^2 \cdot v_0} \cdot e^{-\frac{E_{\rm r} \cdot m_{\rm A}}{2 \cdot \mu_{\rm r}^2 \cdot v_0^2}}$$

Christian Weinheimer

Dark Matter, Astroteilchenschule, 2014 20

Expected recoil spectra II

Expected nuclear recoil spectrum is a feature-less exponentially falling spectrum

$$\frac{dR}{dE_{\rm r}} = \frac{\rho_0 \cdot \sigma_0 \cdot F^2(q^2)}{2 \cdot m_{\tilde{\chi}} \cdot \mu_{\rm r}^2} \cdot \langle \frac{1}{v} \rangle = \frac{\rho_0 \cdot \sigma_0 \cdot F^2(q^2)}{\sqrt{\pi} \cdot m_{\tilde{\chi}} \cdot \mu_{\rm r}^2 \cdot v_0} \cdot e^{-\frac{E_{\rm r} \cdot m_{\rm A}}{2 \cdot \mu_{\rm r}^2 \cdot v_0^2}}$$

Including earth movement around sun leads to a annual modulation of the rate and the spectrum

Require experimental threshold of O(10 keV)!

Larger nucleus mass is preferred, since scalar coherent interaction (SI) scales with A², but then smaller recoil energies !