Exercises to the Dark Matter lectures – series 1

Christian Weinheimer Astroteilchenschule Bärnfels-Obertrubach, October 2014

1. Recoil energy

Calculate the recoil energy E_r , which a WIMP particle of mass m_{χ} with velocity $v_0 = 230 \text{ km/s}$ gives in a scattering process to a nucleus at rest of mass m_A , if the scattering angle in the center of mass system amounts to 180° (in this case equal to the scattering angle in the lab).

Perform the calculation for WIMP masses of $m_{\chi} = 10$ GeV and $m_{\chi} = 100$ GeV and for nucleus masses of $m_A = 72.6$ u (Ge) and for $m_A = 131.3$ u (Xe). (We use the notation c = 1 and 1 u = 0.93 GeV).

2. Interaction rate

What is WIMP nucleus interaction rate in a 1 t xenon target ($m_A = 131.3$ u) for WIMP masses of $m_{\chi} = 10$ GeV and $m_{\chi} = 100$ GeV? Assume a WIMP-nucleus interaction cross section of $\sigma = 10^{-40}$ cm², a local WIMP density of $\rho = 0.3$ GeV/cm³ and a WIMP velocity of $v_0 = 230$ km/s.

3. Radioactive contaminations:

A xenon detector has intrinsic contaminations of argon and krypton at the 1 ppt level (1 ppt= 10^{-12}). In natural krypton (average mass 83.8 u) and natural argon there are also the radioactive isotopes ⁸⁵Kr (released to the atmosphere by above ground atomic bomb tests and nuclear waste management, $T_{1/2} = 11$ y, $Q_{\beta} = 687$ keV) and ³⁹Ar (cosmogenically produced in the atmosphere by cosmic rays, $T_{1/2} = 269$ y, $Q_{\beta} = 565$ keV). The fraction of ⁸⁵Kr to natural krypton is $2 \cdot 10^{-11}$. The radioactivity of natural argon due to the ³⁹Ar fraction amounts to 1 Bq per 1 kg.

What are the background rates in a xenon detector of 1 t target mass due to the ⁸⁵Kr and ³⁹Ar contaminations?