Signature from Dark Matter in the Vector-like Portal

Federica Giacchino

based on: JCAP10(2013)025 [arXiv 1307.6480] JCAP08(2014)046 [arXiv 1405.6921] to appear soon in arXiv 15XX.XXXX in collaboration with L. Lopez-Honorez and M. Tytgat, and A.Ibarra and S.Wild from Technische Universität Munchen (Germany)

Motivation: Why and What?

Galactic, ExtraGalactic and Cosmological Evidences

1. Particle in Beyond Standard Model 2. Stable at least of Age of the Universe 3. $\Omega_{DM}h^2 \approx 0.1198 \pm 0.0026$ (Planck + WMAP 68% limits) 4. Freeze-out production mechanism $\Omega_{DM}h^2(T_0) \simeq \frac{3 \times 10^{-27} cm^3 s^{-1}}{\langle \sigma v \rangle_{FO}}$

• Weakly Interactive Massive Particle candidate

How to Detect a Signal from Dark Matter?

Production: Large Hadron Collider

Indirect detection: Gamma-Ray Research

Secondary photon emissions, from decay and fragmentation of SM particles produced in annihilations, involve featureless continuum spectra difficult to discriminate from astrophysical background

Indirect detection: Gamma-Ray Research

"Smoking Gun" for DM research " clear spectral features: $E_{\gamma} \approx m_{DM}$

has no astrophysical counterpart

point the source

Actively searched: satellite (Fermi) and ground telescopes (H.E.S.S., CTA)

Indirect detection: Gamma-Ray Research

"Smoking Gun" for DM research " clear spectral signature: $E_{\gamma} \approx m_{DM}$

has no astrophysical counterpart

point the source

Actively searched: satellite (Fermi) and ground telescope (H.E.S.S., CTA)

Discriminable from the continuum? Model dependent

"Simplified Models"

Few Independent Parameters to add at Standard Model

Vector-like Portal

leptophilic case

FG, L.Lopez-Honorez and M.Tytgat JCAP10(2013)025 FG, L.Lopez-Honorez and M.Tytgat JCAP08(2014)046

- **S** Real Singlet Scalar DM
- **Ψ** Vector-like Charged Heavy Lepton

Stability imposed by unbroken Z₂ symmetry

$$S \to -S$$

 $\Psi \to -\Psi$

$$\mathcal{L} \supset y_S S \overline{\Psi} l_R + h.c.$$

Yukawa Interaction between hidden and visible sector

Right-Handed SM lepton (visible sector)

FEDERICA GIACCHINO

Two-Body Annihilation of DM into SM lepton

<u>Relevant in the early universe</u>

at freeze-out to obtain the observed relic abundance

Implications in γ-ray researches?

FG, L.Lopez-Honorez and M.Tytgat JCAP10(2013)025 FEDERICA GIACCHINO FG, L.Lopez-Honorez and M.Tytgat JCAP08(2014)046

1. Virtual Internal Bremsstrahlung

 $SS \to l\bar{l}\gamma$

Peaked at E_{γ} -Ms for $r \rightarrow 1$, but <u>suppressed</u>?

$$x = \frac{E_{\gamma}}{M_S}$$

1. Virtual Internal Bremsstrahlung

$$SS \to l\bar{l}\gamma$$

Dominant Bremsstrahlung emission at galactic center

Majorana DM: $\langle \sigma v \rangle_{\gamma l \bar{l}} << \langle \sigma v \rangle_{l \bar{l}}$ Scalar DM: $\langle \sigma v \rangle_{\gamma l \bar{l}} \simeq \langle \sigma v \rangle_{l \bar{l}}$

$$\frac{\langle \sigma v \rangle_{\gamma l \bar{l}}^S}{\langle \sigma v \rangle_{\gamma l \bar{l}}^{\chi}} = 8 \frac{y_S^4}{y_\chi^4}$$

$$r = \frac{M_{\Psi}}{M_S}$$

1. Virtual Internal Bremsstrahlung

Dominant Bremsstrahlung emission at galactic center

2. Monochromatic Gamma ray lines

$$SS \to \gamma\gamma$$

FEDERICA GIACCHINO

r =

3.0

Big enhancement:

O(100) to O(1000)

2.5

MAJORANA

2.0

2. Monochromatic Gamma ray lines

0.01 (مد)_{اال} (مد)

0.001

 10^{-4}

1.0

1.5

Scan over the allowed Parameter Space (VIB) all the points match the observed relic abundance of Dark Matter

 $r = \frac{M_{\Psi}}{M_S}$ FG, L.Lopez-Honorez and M.Tytgat JCAP10(2013)025 $\delta = r - 1$ $\delta = r - 1$ Majorana DM Scalar DM 10⁻²⁵ 10-25 10⁻²⁶ 10⁻²⁶ $\sigma v_{\gamma II} [cm^3/s]$ σν_{γII} [cm³/s] 10⁻²⁷ 10-27 10⁻²⁸ 0.1 0.1 10-28 Fermi LAT GC 10⁻²⁹ 10⁻²⁹ HESS CTA CTA GAMMA-400 GAMMA-400 10⁻³⁰ 10⁻³⁰ 0.01 0.01 10² 10³ 104 10² 10³ 104 M_y [GeV] M_S [GeV]

Scalar DM: present (FermiLAT/H.E.S.S.) and future (GAMMA400/CTA)
γ-ray experiments are sensitive to probe regions of its parameter space Majorana DM: not expected to produce any observable signal in current or next experiments, parameters always small (unless of a boost factor).

Next Step: extended interaction

 $\mathcal{L} \supset y_S S \Psi q_R + h.c.$

Vector-like Quark

Why is important?

- * Re-Computation parameter space for Ω
- Direct Detection Analysis
- * Indirect Detection: Antiprotons and γ from dwarf galaxies
- Constraints mediator mass from LHC

to appear soon in collaboration with A.Ibarra, L Lopez-Honorez, M.Tytgat and S.Wild '15

Conclusion and prospects

- VIB + γγ (leptophilic case):
 - 1/ Dominant contributions to the total amount of DM;
 - 2/ Gamma-ray Spectral Features testable.
- In the model with light-quark interaction, the 3 complementary roads of detection fix the following alive window:

Ms > 1 *TeV* and *r*-1 < 1.3

 Future analysis of Vector-like Portal consist on the DM and top-quark interactions.

Thanks for your attention

Backup slides

FG, A.Ibarra, L.Lopez-Honorez, M.Tytgat and S.Wild arXiv.15XX.XXXX

FEDERICA GIACCHINO

Freeze-out Mechanism

Freeze-out: when annihilation rate falls behind expansion rate

 $Y_{DM}^{FO} \simeq constant$

depends on annihilation cross section and leads to

$$\Omega_{DM}h^2(T_0) \simeq \frac{3 \times 10^{-27} cm^3 s^{-1}}{\langle \sigma v \rangle_{FO}}$$

WIMP candidate gives the observed relic abundance value

$$\langle \sigma v \rangle_{FO} \simeq 3 \times 10^{-26} cm^3 s^{-1}$$

Two-Body Result Effective Operators explanation

 $\mathcal{O}_T = \partial_\mu S \partial_\nu S \Theta^{\mu\nu}$

$$\mathcal{O}_S = m_f S^2 \bar{\Psi}_f \Psi$$

Virtual Internal Bremsstrahlung

$$\frac{\langle \sigma v \rangle_{\gamma l \bar{l}}^S}{\langle \sigma v \rangle_{\gamma l \bar{l}}^{\chi}} = 8 \frac{y_S^4}{y_\chi^4}$$

The yll Spectrum

$$\frac{dN_{\gamma l\bar{l}}}{dx} = \frac{M_S}{\sigma_{\gamma l\bar{l}}} \frac{d\sigma_{\gamma l\bar{l}}}{dE_{\gamma}}$$

with
$$x = \frac{E_{\gamma}}{M_S}$$
 and $r = \frac{M_{\Psi}}{M_S}$

peaked at $E_{\gamma} \sim M_S$ for $r \rightarrow 1$

FG, L.Lopez-Honorez and M.Tytgat JCAP10(2013)025, arXiv 1307.6480

Benchmarks models to explain Gamma ray excess around 130 GeV considering a Mdm=150 GeV

Benchmarks	$ y_i$	r	$\sigma v_{\gamma ll}$	$\sigma v_{\gamma\gamma}$
Scalar	$y_l = 1.17$	1.16	5.410^{-27}	1.310^{-28}
Majorana	$g_l = 0.9$	1.17	2.210^{-28}	8.910^{-30}

FG, L.Lopez-Honorez and M.Tytgat JCAP10(2013)025, arXiv 1307.6480

cross sections in units of cm^3/s

 $\langle \sigma v \rangle_{3Body}^{best} \sim 6.2 \, 10^{-27} cm^3 / s$ $\langle \sigma v \rangle_{\gamma\gamma}^{best} \sim 1.27 \, 10^{-27} cm^3 / s$

T.Bringmann, X. Huang, A.Ibarra, S.Vogl, C.Weniger arXiv:1203.1312

Radiative Emission Cross Sections for the two candidates

A.Ibarra, T.Toma, M.Totzauer and S.Wild Phys.Rev. **D90**(2014)4,043526

<u>DM = Scalar</u>: VIB always larger than $\gamma\gamma$, the gap decreases at increasing $r \Longrightarrow$ Testable <u>DM = Majorana</u>: at small r VIB larger than $\gamma\gamma$, changed relationship at larger $r \Longrightarrow$ never Testable

FEDERICA GIACCHINO

Viable parameter space considering for coannihilations processes Sommerfeld effects (up to 15% changing)

FEDERICA GIACCHINO

FEDERICA GIACCHINO

 $\sigma_{SN} = \frac{f_N^2 \mu_{SN}^2}{\pi m_S^2}$

 $\mu_{SN}\,$ DM-nucleon reduced mass

 $f_N {\begin{array}{c} {
m coupling interaction} \\ {
m between DM and nucleon} \end{array}}$

Spin-Independent SCATTERING CROSS-SECTION of the Dark Matter off nucleon

 $\sigma_{SN} = \frac{f_N^2 \mu_{SN}^2}{\pi m_S^2}$

 $\mu_{SN}\,$ DM-nucleon reduced mass

<u>EFFECTIVE APPROACH</u>: Lagrangian as a sum of higher relevant dimensional operators

$$\sigma_{SN} = \frac{f_N^2 \mu_{SN}^2}{\pi m_S^2}$$

 $\mu_{SN}\,$ DM-nucleon reduced mass

$$\frac{f_N}{m_N} = \frac{y^2}{m_S^2} (f_{T_u}^N C_S^u + 3/4C_T^u(u(2) + \bar{u}(2)) - 8/9f_{T_g}^N C_S^g)$$

$$C_S^u = \frac{2r^2 - 1}{4(r^2 - 1)^2}$$
$$C_T^u = \frac{1}{(r^2 - 1)^2}$$

SCALAR & TENSORIAL interaction between DM and quarks found at tree level

$$\sigma_{SN} = \frac{f_N^2 \mu_{SN}^2}{\pi m_S^2}$$

 $\mu_{SN}\,$ DM-nucleon reduced mass

$$\frac{f_N}{m_N} = \frac{y^2}{m_S^2} (f_{T_u}^N C_S^u + 3/4C_T^u(u(2) + \bar{u}(2)) - 8/9f_{T_g}^N C_S^g)$$

 $C_S^g = \frac{1}{24(r^2 - 1)}$

SCALAR interaction between DM and gluons found at one-loop level: *short-distance regime* $M_{\Psi} - M_S >> m_q$

Antiprotons constraints

