

RUHR-UNIVERSITÄT BOCHUM

Energy loss of intergalactic pair beams

Studying instabilities with a PiC code

Andreas Kempf Theoretische Physik IV: Weltraum- und Astrophysik Obertrubach, 08.10.2015

Pair beam creation by blazars

- Some AGN produce TeV Photons
- TeV Photons interact with the EBL
- $e^- + e^+$ -beams with TeV energies are created

Resulting radiation

Pair beams will

- Compton up-scatter photons (GeV signal?)
- get deflected by magnetic fields (no GeV signal?)

However, this largely ignores plasma effects

Physical motivation

Neglected plasma effects

Pair beams drive instabilites

- heating the background
- relaxing the beam distribution
- removing energy available for cascade

Schlickeiser et. al. 2012

Starting with a proton-electron background + pair beam, quasilinearly

- determined (maximum) growth rate for electrostatic fluctuations
- estimated nonlinear effects (backreaction)

Test conclusions numerically

Particle-in-Cell

A. Kempf: Pair Beams with PiC

Particle-in-Cell

A. Kempf: Pair Beams with PiC

Particle-in-Cell

Particle-in-Cell

RUB

A. Kempf: Pair Beams with PiC

Particle-in-Cell

A. Kempf: Pair Beams with PiC

Particle-in-Cell

A. Kempf: Pair Beams with PiC

Obertrubach, 08.10.2015

Drawbacks

- Small timesteps
- Small cell sizes
- Noise scales with $1/\sqrt{\# \text{particles}}$
- Significant computational resources needed

Benefits

- Self-consistent simulations
- Microphysical processes are included
- Electric and magnetic fields directly accessible
- Particles' velocity and position available
- Temporal evolution

Growth rate $\boldsymbol{\gamma}$ is varying slowly with critical parameters

- less problematic values can be chosen initially
- as long as the assumptions are not violated
- Iow beam / background energy ratio

Results

Energetic beam: $E_{\rm beam}/E_{\rm bg}=10$, $n_{\rm beam}/n_{\rm bg}=2.5 imes10^{-4}$, $\Gamma=10$

Electric field energy over time

Comparison with theoretical results

Obertrubach, 08.10.2015

Results

Energetic beam: $E_{
m beam}/E_{
m bg}=$ 10, $n_{
m beam}/n_{
m bg}=$ 2.5 imes 10⁻⁴, $\Gamma=$ 10

Results

Weak beam: $E_{
m beam}/E_{
m bg}=0.1$, $n_{
m beam}/n_{
m bg}=2.5 imes10^{-6}$, $\Gamma=10$

A. Kempf: Pair Beams with PiC

Obertrubach, 08.10.2015

- Interesting parameter regime is problematic
- Simulations low energy ratio suggest a broadening, but no vanishing of the beam
- Kinetic instabilities may not suppress a GeV signal