

Tritium source systematics of the KArlsruhe TRItium Neutrino (KATRIN) Experiment

Hendrik Seitz-Moskaliuk, KIT-IEKP

Schule für Astroteilchenphysik, Obertrubach-Bärnfels, 07.10.2015-15.10.2015

VALUE (eV)	CL%	DOCUMENT II	D 1
< 2 OUR EVALU	JATION		501.
< 2.05	95	¹ ASEEV	11 O
< 2.3	95	² KRAUS	05 G

Current model independent neutrino mass: Best limit by Mainz and Troitsk

11 05 2014

KATRIN sensitivity: m_v < 200 meV (90 % C. L.)

Current model independent neutrino mass: Best limit by Mainz and Troitsk

4 14.10.2015

Current model independent neutrino mass: Best limit by Mainz and Troitsk

Rear section

6

14.10.2015 Hendrik Seitz-Moskaliuk – Tritium source systematics of the KArlsruhe TRItium Neutrino (KATRIN) Experiment

7

The KATRIN Experiment: MAC-E filter

<u>Magnetic Adiabatic Collimation</u> and <u>Electrostatic Filter</u>

Picard et al., 1992

The KATRIN Experiment: MAC-E filter

14.10.2015 Hendrik Seitz-Moskaliuk – Tritium source systematics of the KArlsruhe TRItium Neutrino (KATRIN) Experiment

14

The KATRIN Experiment: MAC-E filter

15

How systematics influence the sensitivity

KATRIN gets neutrino mass from fitting the endpoint region of tritium β decay.

How systematics influence the sensitivity

KATRIN gets neutrino mass from fitting the endpoint region of tritium β decay.

Each systematic influencing shape of β spectrum at its endpoint has to be considered!

The WGTS

The WGTS

The WGTS

Parameters like temperature, tritium purity, injection pressure, \dots have to be stabilised on a 10⁻³ level.

Parameters like temperature, tritium purity, injection pressure, ... have to be stabilised on a 10⁻³ level.

Energy loss

Energy loss

Model bases on hydrogen/deuterium data \rightarrow measurement for tritium necessary

P. Ranitzsch

Energy loss due to

- Electronic exc. 20 eV
- Vibrational exc. ~0.1 eV
- Rotational exc. ~0.01 eV

Energy loss due to

- Electronic exc. 20 eV
- Vibrational exc. ~0.1 eV
- Rotational exc. ~0.01 eV

Can be tested experimentally only in parts \rightarrow rely on theory.

32 14.10.2015

Outlook: timetable

Summary

Thank you for your attention...

... and thanks to:

Η.	Robertson,	UW
----	------------	----

D. Parno, UW L. Bodine, UW T. James, LaserQuantum H. H. Telle, Madrid G. Drexlin, KIT S. Rupp, KIT F. Heizmann, KIT M. Schlösser, Madrid S. Fischer, KIT L. Kuckert, KIT A. Off, KIT K. Valerius, KIT M. Sturm, KIT R. Größle, KIT S. Niemes, KIT M. Machatschek, KIT M. Kleesiek, KIT B. Bornschein, KIT M. Babutzka, KIT

Total KATRIN systematic budget

source of systematic shift	achievable / projected accuracy	systematic shift $\sigma_{\rm syst}(m_{\nu}^2) (10^{-3} {\rm eV}^2)$
description of final states	f < 1.01	< 6
T^- ion concentration	$< 2 \cdot 10^{-8}$	< 0.1
unfolding of energy loss func. $f(\varepsilon)$		< 6
	$\begin{split} \Delta T/T &< 2 \cdot 10^{-3} \\ \Delta \Gamma/\Gamma &< 2 \cdot 10^{-3} \end{split}$	
monitoring of column density ρd	$\begin{aligned} \Delta \varepsilon_T / \varepsilon_T &< 2 \cdot 10^{-3} \\ \Delta p_{\rm inj} / p_{\rm inj} &< 2 \cdot 10^{-3} \\ \Delta p_{\rm ex} / p_{\rm ex} &< 0.06 \end{aligned}$	$< \frac{\sqrt{5 \cdot 6.5}}{10}$
background slope	$< 0.5\mathrm{mHz/keV}$ (Troitsk)	< 1.2
HV variations	$\varDelta HV/HV < 3\mathrm{ppm}$	< 5
WGTS potential variations	$\varDelta U < 10{\rm meV}$	< 0.2
WGTS mag. field variations	$\varDelta B_{\rm S}/B_{\rm S} < 2\cdot 10^{-3}$	< 2
elastic $e^ T_2$ scattering		< 5
identified syst. uncertainties	$\sigma_{ m sys, \ tot} = \sqrt{\sum \sigma}$	$\frac{2}{\text{sys}} \approx 0.01 \text{eV}^2$

KDR, table 6, page 217, taken from M. Kleesiek, PhD thesis, KIT (2014).

Systematics budget for 200 meV sensitivity

	KDR 200 meV sensitivity	
5 independent systematics	$7.5 \cdot 10^{-3} \text{eV}^2$ (each)	
Total systematic uncertainty	0.017 eV ²	Summed quadratically
Total statistical uncertainty	0.018 eV ²	summed quadratically
Sum	0.025 eV^2	
1σ sensitivity	0.157 eV	square root
Sensitivity (90 % C. L.)	0.202 eV	multiplied with $\sqrt{1.64}$

Temperature and high voltage stability

39

Egun

Hendrik Seitz-Moskaliuk - Tritium source systematics of the KArlsruhe TRItium 40 14.10.2015 Neutrino (KATRIN) Experiment

Egun

Pictures taken from P. Ranitzsch, talk at KATRIN analysis workshop, Münster 2015

Deconvolute the energy loss function

Response function

 $f_{\rm res}(E, qU)$ $= T(E, qU) \otimes P_0 + T(E, qU) \otimes P_1 f(\Delta E) + T(E, qU)$ $\otimes P_2(f(\Delta E) \otimes f(\Delta E)) + \cdots$ $= P_0\epsilon_0 + P_1\epsilon_1 + P_2\epsilon_2 + \cdots$

ΔE

System of equations

 $f_{res.0} = T(E, qU) = \epsilon_0$ $f_{res.0.5} = P_{0.0.5}\epsilon_0 + P_{1.0.5}\epsilon_1 + P_{2.0.5}\epsilon_2 + P_{3.0.5}\epsilon_3$ $f_{res,0.5} = P_{0,3.0}\epsilon_0 + P_{1,3.0}\epsilon_1 + P_{2,3.0}\epsilon_2 + P_{3,3.0}\epsilon_3$ $f_{res,0.5} = P_{0,6.0}\epsilon_0 + P_{1,6.0}\epsilon_1 + P_{2,6.0}\epsilon_2 + P_{3,6.0}\epsilon_3$

Deconvolute energy loss function $f(\Delta E)$

$$\epsilon_1 = T(e, qU) \otimes f(\Delta E)$$

