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Distillation Column for the  
XENON1T Experiment 

Reboiler 
 
 
 

¾ Evaporate the 
incoming liquid 
Xe 
 

¾ Heating power 
of 600W by 2 
heat cartridges 
 

¾ Storage of up to 
3 liters liquid Xe 
 
 
 
 

¾Cool down incoming Xe-gas to liquid phase 
¾Extract liquefied and cooled gaseous Xe 

through separate lines 
¾Take advantage of a first stage of distillation 
 

Preseparation by input condenser 

- 0.07 evt / t yr 

XENON Dark Matter Project 
¾ Direct dark matter detection experiment utilizing a  xenon dual-phase TPC 
¾ Different stages with increasing volume: XENON10, XENON100, XENON1T, XENONnT 
¾ XENON100 with 162 kg LXe probed the possible spin-independent WIMP-nucleon cross 

section down to σSI < 2 x 10-45 cm2  @ 55 GeV/c² 
                                                 
 
 

                                                 
                                                  
 

85Kr as an intrinsic background source   

Upcoming XENON1T uses  
~3.3 tons of xenon for  

a projected sensitivity of   
    σSI = 2 x 10-47 cm2 

 

    85Kr   
       Qe = 687 keV  
        t1/2 = 10.76 y 

XENON100 
 Measured:  

𝑛𝑎𝑡𝐾𝑟
𝑋𝑒

=  19 ppt  

XENON1T     
Requirement: 

  
𝑛𝑎𝑡𝐾𝑟

𝑋𝑒
 < 0.5 ppt 

                    

Removal of krypton by cryogenic distillation 
¾ Make use of different vapor pressures: 

 
Krypton: 2090  kPa   @178K  
Xenon:     201   kPa   @178K 
 

 
 

„Multi-stages“distillation  
 with partial reflux 

¾ Connection of a series of theoretical distillation 
plates for desired purity 

 
¾Calculation of the required number of plates with 

the McCabe-Thiele method 
 

¾Technical realization via package column using 
    SULZER EX structured stainless steel package  
    material 
 
¾ Create a reflux along the package column with a 

heatable liquid reservoir  
     (reboiler) at the bottom and 
     a condensing unit at the top 
     (top condenser)  
 

 

 

Multi-stage distillation column with partial reflux 

¾ Is abundant in natural krypton 
(85Kr/natKr ~ 10-11) 

¾ One crucial intrinsic background 
source for liquid xenon experiments 

¾ Commercially available xenon has 
concentrations of natKr/Xe ~ O(ppb) 

¾ Further removal in advance is 
necessary  
 
 

83mKr tracer for online diagnostics 
¾ Use short-lived metastable isotope 83mKr to monitor krypton concentration at different 

positions of the system 
¾ Place custom-made 83mKr-decay  detectors for live analysis at the inlet and the two 

outlets 
¾ Probabilistic modeling of the krypton dynamics during the purification process possible 
¾ Prediction of the krypton behavior according to the model matches the obtained data  

(see S. Rosendahl, JINST 9 (2014) P10010 and PhD Thesis S.Rosendahl (2015)) 
 

Results & Outlook 

- Fully tested and now commissioned at the XENON1T site 
 

- Measured output in a Phase-I  version of  < 26 ppq (10^-15!) @ 90 
CL obtained by a GC-RGMS system at the MPIK Heidelberg 
 

- Measured separation factor of  >12x 000 measured with a cold-
trap enhanced RGA setup  
 
 

Requirement of next generation 
Experiment XENONnT  
        nat Kr / Xe < 0.2 ppt (entspricht 
0.07 evt/ ton  year 

Kr enriched off-gas 
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Separation factor 

Measured on artificially krypton enhanced xenon with a 
RGA setup with increased sensitivity using 3m package 

(see E Brown et al 2013 JINST 8 P0201) 

Outlet concentration 
natKr in Xe < 26 ppq (10-15) @ 90 CL 
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¾Heating power of 
600W by 2 heat 
cartridges 
 
¾Storage of up to 
3 liters liquid Xe 
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Input condenser allows for selection of gaseous 
and/or liquid feed + acts as a first separation stage 

Results & Outlook 
¾ Design requirements  of a 105 separation 

factor and less than 0.5 ppt output 
concentration have been surpassed 
 

¾ Long-term stability has been shown 
during performance test measurements 
 

¾ Installed @ LNGS on the XENON1T site 
and ready for commissioning 
 

¾ Output concentration fulfills the 
requirement of natKr in Xe <0.2 ppt for the 
next generation experiment XENONnT 

This project is funded by DFG Großgeräte (INST 211/528-1 
FUGG) together with state NRW and University of Münster 
as well as by BMBF (05A11 PM1). Some aspects of the R&D 
is supported by DFG (WE 1843/7-1) and by Helmholtz 
Alliance of Astroparticle Physics HAP 
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Signal at the liquid 
outlet below 
sensitivity! 

Relative volatility  
α ≈ 10 

Purified xenon in the liquid 

Measured with a GC-RGMS system by the MPIK Heidelberg 
with sensitivity in the sub-ppt range using 1m package  

(see Lindemann, & Simgen in Eur. Phys. J. C (2014) 74:2746) 

¾ Xenon, the less volatile component, is liquefied, 
while krypton prefers to stay in the gaseous 
phase                   
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Krypton Concentration 
Monitoring in Cryogenic 

Distillation for XENON1T 
with a 83mKr Tracer



1. The XENON1T Experiment
• Direct dark matter 

search

• Located underground at 
LNGS

• Dual-phase Xe-TPC 
yields two signals:

• Primary scintillation 
in LXe (S1)

• Electroluminescence 
in GXe (S2)

99.5 % ER/NR discrimination from S1/S2 ratio
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2. 85Kr Electronic Recoil Background

• Intrinsic contaminations of Xe with atmospheric Kr (~ 10-6)

• 85Kr/natKr ≈ 2 • 10-11 from man-made nuclear fission

• XENON1T purity requirement: 

• natKr/Xe < 0.5 ppt 

• Reduction factor FRed ≈ 105

R
background

=

N
Xe

· c85
Kr

⌧
· 0.005 · 0.03 = 0.47 events/ton/year

�-spectrum ROI
99.5 % ER/NR discrimination

A85Kr

2



2.1 Cryogenic Distillation

• Utilize higher Kr vapor pressure

• Connection of  multiple 
distillation stages for desired 
purity (McCabe-Thiele method)

• Reflux along the column with 
bottom reboiler and top 
condenser

• Realized as package column

3

⇡

⇡

cf. talk by M
. M

urra



Achieved concentration of 
0.026 ppt (10-12) natKr/Xe 

with phase-1 column in 
Münster

Offline: Far below the sensitivity of commercially 
available measurement systems. Measured with 
custom RGMS setup from MPIK Heidelberg. 

4

Online: Use a radioactive tracer, measure decays.

Rosendahl et al., JINST 9 (2014) P100 10
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3. A Radioactive 83mKr Tracer
• Isomer with T1/2 = 1.83 h and 

two highly converted transitions

• No long-term contamination

• Sufficient signal rate and 
distribution time

• Background reduction by 
coincidence measurement

• Test Kr distillation at sub-ppt 
concentrations in Xe

5

83mKr tracer method to determine the 
separation factor of a cryogenic distillation 

column for the XENON collaboration 
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The XENON Collaboration 

photomutliplier 
tube (PMT) 

Detector Setup 

PTFE VUV light 
reflecting foil 

R8520-06-Al 
by 
Hamamatsu 

PMT 

Xenon gas flow 

85Krypton as intrinsic background 
¾ 85Kr decays through β-decay with half life of 10.76 years 
    with an endpoint energy of 687 keV 
¾ Abundance in natural Krypton due to nuclear fission 10-11 

  
 

Intrinsic background with non-trivial 
detection at this concentration  

83Rb embedded  in 
Zeolite  V. Hannen et al.: 
arXiv:1109.4270v2, 2011. and D. 
Venos et al., 83mKr radioactive source 
based on 83Rb traped in cation-
exchange paper or in 
 zeolite, Appl. Radiat. Isotopes 63     
 (2005) 323. 

83mKr-Source 
¾ Zeolite allows 

to emanate 
83mKr while 

83Rb does not 
contaminates 
the system  

 Activity of ~ 1MBq for 
measurements available 

¾ 83mKr de-excitation into 
83Kr is a two-step 
process with a half life of 
1.83 h  
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WIMPs as a Dark Matter 
candidate 

73%  
DARK 

ENERGY 

4% 
ORDINARY 

MATTER  

23% DARK 
MATTER 

¾About 25 % of the energy density of the universe consists of matter, but 
only 4 % of it is luminous mass 

¾Evidence for non-luminous, non-baryonic mass in the universe arise 
from different observations e.g.: 

�  rotational velocities of stars in galaxies 
�  gravitational lensing 
�  discrepancy between the center of the gravitational potential 

and the  
     center of luminous mass in the Bullet Cluster 
�  fluctuations on a µK scale in the Cosmic Microwave 

Background explainable by non-baryonic matter  
 

¾Possible particle candidate for cold dark matter has to fulfill the 
properties which are consistent with the observations, e.g.:  

� Moves slowly ( v << c)      “cold” 
� Strong and electromagnetic interactions highly surpressed 
� Weak interaction or on a scale comparable to the weak 

interaction and gravitational force 
� Stable on the timescale of the universe      

 
 

 
 

 
 
              

WIMPs (Weakly 
Interacting 
Massive Particles) 
 

XENON Project 
¾  The XENON Project uses a two phase noble gas detector to detect WIMPs 

through      
     direct scattering with Xenon nuclei 
¾ It is located at the LNGS in Gran Sasso, Italy at 3100 water equivalent depth 
¾ The first stage XENON10 used about 10kg of liquid Xenon  
     setting first limits, while the second stage XENON100  
     has set the most stringent limits (σ < 2 x 10-45 cm²) at 
     the moment on WIMP cross sections  
¾  As next stage XENON1T will start in 2015 to achieve the  
     most sensitive search (σ ~ 10-47 cm²) 
¾  Increasing the amount of liquid xenon to about 3 tons and  
     reducing external and dominating  intrinsic background  
     is necessary to improve the search 
 
 
 
 

 
 

 
 
 
 
 

photomutliplier 
tube (PMT) 

Exclusion limits on WIMP-Nucleon cross 
sections for different masses((Phys. 
Rev. Lett. 109, 181301 (2012)) 

 
¾ Using different boiling points to separate 

Krypton from Xenon 
¾        T(Kr)=120 K, T(Xe)=165 K 

 
¾ High throughput rate (3 kg/h) 

 
¾ Aim: Reduction to <0.5 ppt of natural 

Krypton in Xenon 
 

¾ Theoretical separation factor ~ 105 

 
¾ Xenon recovery ~ 99% 

 Measurement of the separation factor necessary ! 

Removing Krypton through Distillation 

For further information 
see poster of M. Murra 
HK58.1 

83mKr tracer method 
¾  Doping Xenon gas with 
     83mKr as a tracer, which has same chemical      
     properties as 85Kr   
 
¾   Measuring the Xenon  
      scintillation light  from 83mKr  
      decays 

 
¾ The signal rate is proportional to  
      concentration 
 
¾  Use detectors to monitor    
     relative concentration at different points  
     in the distillation  column 

 
¾  Allows  for full characterization 
     of distillation process 
 

Ratio of particle flux at 
different flows 

Overview sketch of the pre-
separation test setup 

First results 
¾  Firsts tests of the system running with the condenser stage only are done 
     (see talk of S. Rosendahl T107.7)  

 
¾ Separation factor of this  
     so called pre-separation  
     successful determined  
     with the 83mKr tracer  
     method 

 
¾ Measured 83mKr mass flow  
    concentration of  
       83mKr/Xe ~ 10-16 

 
¾ So the pre-separation stage  
     has at equal flows at both output lines a separation 
     factor of ~12 
 
 

 
 
 

 

Overview sketch of the pre-
separation test setup 

Ratio of particle flux for different flows 

Show that cryogenic 
distillation actually 

works in this regime!

83m

83m

83m

V. H
annen et al., JIN

ST
 6 (2011) P

10013



3.1 Detector Design
• Interaction of decay 

products with GXe

• 30 keV e- range ~ 1 cm

• λ =178 nm 
scintillation by de-
excitation of Xe-dimers

• Custom-made detectors

• Hamamatsu® 
R8520-06-Al 
photomultipliers

• PTFE reflector for 
VUV

83m
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4. Modeling Signal Rate and Particle Flux 
for a Single Stage Setup 

• Liquefaction at coldhead

• Expected enrichment of Kr in off-gas

• 3 detectors (i): gin, gout, lout

• 3 ppq (10-15) 83mKr/Xe with 1 MBq source and 5 slpm flow

7

gin gout

lout



4.1 Measured Decay Rates

83m ⇡
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(~ minutes)!
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83m

�98�

time [min]
0 50 100 150 200 250 300 350

ra
te

 [c
ps

]

10

210

310

Gas In
Gas Out
Liquid Out

83m

t = 175

83m

83m

S. Rosendahl et al., 
submitted to Rev. Sci. Instr.



4.2 Flows, Separation Factor and 
Residence Time

qi =
piVdet,i

t

S =
(cṄ)

gin

(cṄ)
lout

=
r
gout

q
gout

p
lout

r
lout

q
lout

p
gout

· ⌫liquid
⌫
gas

· e
⌧
lout

⌧

Decay 
correction for 
residence time

Relative 
detector 

efficiencies

Measured
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83m

83m

83m

⇠
FIC02 = 0 slpm

83m

83m

83m

83m Ṅ

•

•

VLchamber = 0

• L

qlout
VL

tlout :=
VL

qlout

S given by total particle flows at the detectors:



4.3 Separation Factors

• Residence 
time by fit of 
flow model 
( ~ min)

•  S ~ 10

10

Kr distillation works at sub-ppt 
concentrations!

98 sl 98 sl 127 sl 127 sl 198 sl



⌧2

�t3

83m

83m

83m

83m

rgin(t)
rlout(t)

rgin(t) =
Alout

p,q,V

Agin
p,q,V

·
✓
⌧lout · ṙlout(t) + ⌧lout

⌧1
· rlout(t)

◆

Alout
p,q,V =

Agin
p,q,V

u̇(t) + a(t)u(t) = f(t)

5. Particle Flux in the Phase-1 Column
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Rate fit function:



uG,O↵gas =
Ḋ

⇢Xe,20�C · A = 11.2mm/s

83m
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5.1 Tracer Applications for the 
Phase-1 Column

• Rate at liquid out 
dominated by 
background

• Model off-gas for Kr 
particle flow

• Determination of 
residence time & 
HETP value by fit of 
flow model
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uG,O↵gas =
Ḋ

⇢Xe,20�C · A = 11.2mm/s
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6. Conclusion
• 83mKr is an ideal tracer for cryogenic distillation 

(lifetime, two-fold decay).

• Concentration measurements are substituted with 
decay rate measurements.

• Separation factors S ~ 10 for a single stage 
distillation setup prove that cryogenic distillation 
of Kr is possible at sub-ppt concentrations.

• Particle flow model in the phase-1 column can be 
used for calculating HETP value & residence time 
at different flows/pressures.
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Thank you for your 
attention!
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Residence time

• Define relative fractions

83m
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(cṄ)

lout

(cṄ)
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