

Krypton Concentration Monitoring in Cryogenic Distillation for XENONIT with a ^{83m}Kr Tracer

SAT 2015

Christian Wittweg Institut für Kernphysik Westfälische Wilhelms-Universität Münster

I.The XENONIT Experiment

 Direct dark matter search

Buß

cf. talk by A.

- Located underground at LNGS
 - Dual-phase Xe-TPC yields two signals:
 - Primary scintillation in LXe (SI)
 - Electroluminescence in GXe (S2)

99.5 % ER/NR discrimination from SI/S2 ratio

2.⁸⁵Kr Electronic Recoil Background

- Intrinsic contaminations of Xe with atmospheric Kr ($\sim 10^{-6}$)
- 85 Kr/^{nat}Kr $\approx 2 \cdot 10^{-11}$ from man-made nuclear fission
- XENONIT purity requirement: $^{nat}Kr/Xe < 0.5 ppt$
 - Reduction factor $F_{\text{Red}} \approx 10^5$

 $A85 \mathbf{v}$

 $R_{\text{background}}$

2.1 Cryogenic Distillation

- Utilize higher Kr vapor pressure
- Connection of multiple distillation stages for desired purity (McCabe-Thiele method)
- Reflux along the column with bottom reboiler and top condenser
- Realized as package column

Achieved concentration of **0.026 ppt** (10⁻¹²) ^{nat}Kr/Xe with phase-1 column in Münster

Online: Use a radioactive tracer, measure decays.

Rosendahl et al., JINST 9 (2014) P100 10

3.A Radioactive ^{83m}Kr Tracer

- Isomer with T_{1/2} = 1.83 h and two highly converted transitions
 - No long-term contamination
 - Sufficient signal rate and distribution time
 - Background reduction by coincidence measurement
- Test Kr distillation at sub-ppt concentrations in Xe

Show that cryogenic distillation actually works in this regime!

3.1 Detector Design

- Interaction of decay products with GXe
- 30 keV e⁻ range ~ I cm
- λ = I 78 nm
 scintillation by deexcitation of Xe-dimers
- Custom-made detectors
 - Hamamatsu®
 R8520-06-Al
 photomultipliers
 - PTFE reflector for VUV

4. Modeling Signal Rate and Particle Flux for a Single Stage Setup

- Liquefaction at coldhead
- Expected enrichment of Kr in off-gas
- 3 detectors (i): gin, gout, lout
- 3 ppq (10-15) ^{83m}Kr/Xe with 1 MBq source and 5 slpm flow

4.1 Measured Decay Rates

4.2 Flows, Separation Factor and Residence Time

S given by total particle flows at the detectors:

Residence
 time by fit of
 flow model
 (~min)

• S ~ I O

Kr distillation works at sub-ppt concentrations!

5. Particle Flux in the Phase-I Column

Pressures + flow

5.1 Tracer Applications for the Phase-1 Column

- Rate at *liquid out* dominated by background
- Model off-gas for Kr particle flow
- Determination of residence time & HETP value by fit of flow model

6. Conclusion

- ^{83m}Kr is an ideal tracer for cryogenic distillation (lifetime, two-fold decay).
- Concentration measurements are substituted with decay rate measurements.
- Separation factors S ~ IO for a single stage distillation setup prove that cryogenic distillation of Kr is possible at sub-ppt concentrations.
- Particle flow model in the phase-1 column can be used for calculating HETP value & residence time at different flows/pressures.

Thank you for your attention!

Bibliography

- I. S. Rosendahl, Gas Purification of the XENON Dark Matter Search, PhD Thesis, Westfälische Wilhelms-Universität, Münster, 2015.
- 2. S. Rosendahl et al., A novel ^{83m}Kr tracer method for characterizing xenon gas and cryogenic distillation systems, JINST 9 P10010, 2014.
- 3. E. Aprile et al., The XENON100 dark matter experiment, Astroparticle Physics 35, 9, 2012.

Residence time

 $f_{\text{liquid}} + f_{\text{gas}} = 1$