Characterization of UV-sensitive SiPM for the nEXO experiment

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Michael Wagenpfeil Bärenfels, 10.10.2016

Characterization of UV-sensitive SiPM for the nEXO experiment

Overview

- Motivation: the neutrinoless double beta decay
- The nEXO experiment
- UV-sensitive SiPMs as photon detector
- Future plans

The neutrinoless double beta decay $(0v\beta\beta)$

The double beta decay $(2\nu\beta\beta)$

- Possible for several ee-nuclei
- e.g. ⁷⁶Ge, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe
- First observation in 1987
- Second order weak process
- Half lives of $10^{18} 10^{21}$ years

5

The neutrinoless double beta decay

Necessary:

- Neutrino has mass
- Neutrino has Majorana nature (i.e. $v = \overline{v}$)
- Both violate the SM
- Never been observed
- Enormous half lives

(e.g. $T_{1/2}^{0v}$ > 1.1 x 10²⁶ for ¹³⁶Xe ^[1])

 $(T_{1/2}^{0v})^{-1} = G^{0v}(Q,Z) |M^{0v}|^2 m_{\beta\beta}^2$

 Distinguish from 2vββ decay via energy

The next Enriched Xenon Observatory (nEXO)

nEXO

What we need:

- Good energy resolution ΔE
- Excellent detection efficiency ε
- Low background rate c
- Large decay material mass M_{ββ}
- Wait a lot: t

$$m_{\beta\beta} \sim \sqrt{1/\epsilon} \left(\frac{c \cdot \Delta E}{M_{\beta\beta} \cdot t} \right)^{\frac{1}{4}}$$
^[2]

What we plan:

- TPC with 5t of LXe
- LXe enriched to 90% in ¹³⁶Xe
- Low background (deep underground)
- Modern, sensitive detector systems

nEXO

Detection systems:

- Secondary electron drift to charge readout tiles (TPC height = 1.3 m)
- Xe-scintillation photos detected by SiPM-arrays (inner area: ~4 sqm)
- Problem: low efficiency for Xenon scintillation photons ($\lambda = 178$ nm)

Charge Readout Tiles

Characterization of UV-sensitive SiPMs

SiPM - Crosstalk

- Single photon response
- Pulse height spectrum corresponds to number of triggered pixels
- Crosstalk needs to be corrected
- Rescale spectrum with 1p.e. response

SiPM - PDE

- Photon detection efficiency
- Probability for detecting impinging photons
- PDE depends on wavelength
- Reference detector necessary

Measurement:

- Simulate flux within the cell
- Get detector surface areas
- Measure detection rate
- Correct for crosstalk
- Calculate PDE

- Crosstalk increases with overvoltage
- Higher bias yields higher gain and higher photon detection efficiency
- Tradeoff necessary
- nEXO requirements: >15% PDE and <20% correlated avalanches
- We are not there, yet!

Future plans

Future plans

SiPM devices:

- Future devices need less crosstalk
- At least 15% PDE @ 178nm
- Stable amplification at high OV
- Radioactivity assay crucial

Detector system design:

- UV-sensitive SiPM-tiles (10x10cm²)
- Reduce capacitance on channels
- Equip and operate large-area SiPM detectors
- Timeline for nEXO: construction start in 2020

Thanks a lot

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Parameters	Value
Photo-detection efficiency at 175-178nm in liquid Xenon	≥15%
Radiopurity: contribution of photo-detectors to the overall background	<1%
Dark noise rate at -100°C	≤50Hz/mm ²
Average number of correlated avalanches (cross-talk and after-pulse) per parent avalanche at -100°C within $10\mu s$	≤0.2
Single photo-detector active area	≥1cm ²
Capacitance	<50pF/mm²
Gain fluctuations + electronics noise	<0.1PE

